Comptes Rendus
Microcavités et cristaux photoniques/Microcavities and photonic crystals
Quantum optical effects in semiconductor microcavities
Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 41-52.

Investigations of quantum effects in semiconductor quantum-well microcavities interacting with laser light in the strong-coupling regime are presented. Modifications of quantum fluctuations of the outgoing light are expected due to the non-linearity originating from coherent exciton–exciton scattering. In the strong-coupling regime, this scattering translates into a four-wave mixing interaction between the mixed exciton–photon states, the polaritons. Squeezing and giant amplification of the polariton field and of the outgoing light field fluctuations are predicted. However, polariton–phonon scattering is shown to yield excess noise in the output field, which may destroy the non-classical effects. Experiments demonstrate evidence for giant amplification due to coherent four-wave mixing of polaritons. Noise reduction below the thermal noise level was also observed.

Cet article présente les recherches sur les effets quantiques dans les microcavités semi-conductrices à puits quantiques interagissant avec un champ laser dans le régime de couplage fort. Les calculs montrent que les fluctuations quantiques du champ sortant doivent être modifiées à cause de la non-linéarité provenant de la diffusion cohé rente entre excitons. En régime de couplage fort, cette interaction entre excitons se traduit en effet par un mélange à quatre ondes entre polaritons. Il en résulte une compression ou une amplification g éante des fluctuations du champ de polaritons et du champ lumineux sortant. Cependant la diffusion phonon–polariton peut détruire les effets non classiques en ajoutant de l'excès de bruit aux fluctuations du champ sortant. Les expériences montrent l'amplification gé ante due au mélange à quatre ondes cohérent de polaritons. Une r éduction du bruit au-dessous du niveau de bruit thermique a aussi ét é observée.

Revised:
Published online:
DOI: 10.1016/S1631-0705(02)01302-6
Keywords: semiconductor microcavities, strong coupling, squeezing, noise reduction, parametric amplification, four-wave mixing
Mots-clés : microcavités semi-conductrices, couplage fort, compression du bruit quantique, réduction du bruit, amplification paramétrique, mélange à quatre ondes

Elisabeth Giacobino 1; Jean-Philippe Karr 1; Gaëtan Messin 1; Hichem Eleuch 1; Augustin Baas 1

1 Laboratoire Kastler Brossel, université Pierre et Marie Curie, École normale supérieure et CNRS, case 74, 4, place Jussieu, 75252 Paris cedex 05, France
@article{CRPHYS_2002__3_1_41_0,
     author = {Elisabeth Giacobino and Jean-Philippe Karr and Ga\"etan Messin and Hichem Eleuch and Augustin Baas},
     title = {Quantum optical effects in semiconductor microcavities},
     journal = {Comptes Rendus. Physique},
     pages = {41--52},
     publisher = {Elsevier},
     volume = {3},
     number = {1},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01302-6},
     language = {en},
}
TY  - JOUR
AU  - Elisabeth Giacobino
AU  - Jean-Philippe Karr
AU  - Gaëtan Messin
AU  - Hichem Eleuch
AU  - Augustin Baas
TI  - Quantum optical effects in semiconductor microcavities
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 41
EP  - 52
VL  - 3
IS  - 1
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01302-6
LA  - en
ID  - CRPHYS_2002__3_1_41_0
ER  - 
%0 Journal Article
%A Elisabeth Giacobino
%A Jean-Philippe Karr
%A Gaëtan Messin
%A Hichem Eleuch
%A Augustin Baas
%T Quantum optical effects in semiconductor microcavities
%J Comptes Rendus. Physique
%D 2002
%P 41-52
%V 3
%N 1
%I Elsevier
%R 10.1016/S1631-0705(02)01302-6
%G en
%F CRPHYS_2002__3_1_41_0
Elisabeth Giacobino; Jean-Philippe Karr; Gaëtan Messin; Hichem Eleuch; Augustin Baas. Quantum optical effects in semiconductor microcavities. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 41-52. doi : 10.1016/S1631-0705(02)01302-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01302-6/

[1] C. Weisbuch; et al.; R. Houdré et al. Phys. Rev. Lett., 69 (1992), pp. 3314-3317

[2] J. Rarity Microcavities and Photonic Bandgaps (C. Weisbuch, ed.), Kluwer, 1996

[3] S. Haroche; G. Rempe; R.J. Thompson; R.J. Brecha; W.D. Lee; H.J. Kimble Phys. Rev. Lett., Fundamental Systems in Quantum Optics, 67 (1992), p. 768

[4] S.W. Koch; N. Peygambarian; M. Lindberg J. Phys. C, 21 (1988), p. 5229

[5] A. Mysyrowicz; D. Hulin; A. Antonetti; A. Migus; W.T. Masselink; H. Morkoc Phys. Rev. Lett., 55 (1986)

[6] A.M. Fox; J.J. Baumberg; M. Dabbicco; B. Huttner; J.F. Ryan Phys. Rev. Lett., 74 (1995), p. 1728

[7] E. Hanamura Microcavities and Photonic Bandgaps (J. Rarity; C. Weisbuch, eds.), Kluwer, 1996

[8] V. Savona; Z. Hradil; A. Quattropani Phys. Rev. B, 49 (1994), p. 8774

[9] S. Savasta; R. Girlanda Phys. Rev. Lett., 77 (1996), p. 4736

[10] H. Eleuch; J.M. Courty; G. Messin; C. Fabre; E. Giacobino J. Opt. B, 1 (1999), p. 1

[11] G. Messin; J.Ph. Karr; H. Eleuch; J.M. Courty; E. Giacobino J. Phys. Cond. Matter, 11 (1999), p. 6069

[12] E. Hanamura J. Phys. Soc. Japan, 37 (1974), p. 1545

[13] C. Ciuti; P. Schwendimann; B. Devaud; A. Quattropani Phys. Rev. B, 62 (2000), p. R4825

[14] P.G. Savvidis; J.J. Baumberg; R.M. Stevenson; M.S. Skolnick; D.M. Whittaker; J.S. Roberts Phys. Rev. Lett., 84 (2000), p. 1547

[15] R. Huang; F. Tassone; Y. Yamamoto Phys. Rev. B, 61 (2000), p. R7854

[16] R. Houdré; C. Weisbuch; R.P. Stanley; U. Oesterle; M. Ilegems Phys. Rev. Lett., 85 (2000), p. 2793

[17] R.M. Stevenson; V.N. Astranov; M.S. Skolnick; D.M. Whittaker; M. Emam-Ismail; A.I. Tartakovskii; P.G. Savvidis; J.J. Baumberg; J.S. Roberts Phys. Rev. Lett., 85 (2000), p. 3680

[18] G. Messin; J.Ph. Karr; A. Baas; G. Khitrova; R. Houdré; R.P. Stanley; U. Oesterle; E. Giacobino Phys. Rev. Lett., 87 (2001), p. 127403

[19] H. Haug Z. Phys. B, 24 (1976), p. 351

[20] Ba An Nguyen Phys. Rev. B, 48 (1993), p. 11732

[21] W.H. Louisell Quantum Statistical Properties of Radiation, Wiley, New York, 1973

[22] M.L. Steyn-Ross; C.W. Gardiner Phys. Rev. A, 27 (1983), p. 310

[23] C. Cohen-Tannoudji; J. Dupont-Roc; G. Grynberg Processus d'interaction entre photons et atomes, InterÉditions/Éditions du CNRS, Paris, 1988 (p. 309)

[24] C. Piermarocchi; F. Tassone; V. Savona; A. Quattropani; P. Schwendimann Phys. Rev. B, 53 (1996) no. 15, p. 584

[25] F. Tassone; C. Piermarocchi; V. Savona; A. Quattropani; P. Schwendimann; F. Tassone; C. Piermarocchi; V. Savona; A. Quattropani; P. Schwendimann Phys. Rev. B, 53 (1996), p. R7642

[26] C. Ciuti; V. Savona; C. Piermarocci; A. Quattropani; P. Schwendimann Phys. Rev. B, 58 (1998), p. 7926

[27] J.Ph. Karr, Thèse, Paris, 2001

[28] H. Eleuch, Thèse, Paris, 1998

[29] L.A. Orozco; M.G. Raizen; Min Xiao; R.J. Brecha; H.J. Kimble; H.J. Carmichael Phys. Rev. A, 4 (1987), p. 1490

[30] M.J. Collett; C.W. Gardiner; S. Reynaud; A. Heidmann; S. Reynaud; C. Fabre; E. Giacobino; A. Heidmann Phys. Rev. A, 30 (1984), p. 1386

[31] Y. Toyozawa Prog. Theor. Phys., 20 (1958), p. 53

[32] B. Sermage; S. Long; I. Abram; J.Y. Marzin; J. Bloch; R. Planel; V. Thierry-Mieg Phys. Rev. B, 53 (1996), p. 16516

[33] R. Houdré; J.L. Gibernon; P. Pellandini; R.P. Stanley; U. Oesterle; C. Weisbuch; J. O'Gorman; B. Roycroft; M. Ilegems Phys. Rev. B, 52 (1995), p. 7810

[34] T.R. Nelson; E.K. Lindmark; D.V. Vick; K. Tai; G. Khitrova; H.M. Gibbs Microcavities and Photonic Bandgaps (J. Rarity; C. Weisbuch, eds.), Kluwer, 1996

[35] C. Ciuti; V. Savona; C. Piermarocci; A. Quattropani; P. Schwendimann Phys. Rev. B, 58 (1998), p. R10123

[36] X. Marie; P. Renucci; S. Dubourg; T. Amand; P. Le Jeune; J. Bloch; R. Planel Phys. Rev. B, 59 (1999), p. R2494

[37] F. Tassone; Y. Yamamoto Phys. Rev. B, 59 (1999), p. 10830

[38] A. Yariv Quantum Electronics, Wiley, New York, 1989 (Chapter 17)

[39] Microcavities and Photonic Bandgaps (J. Rarity; C. Weisbuch, eds.), Kluwer, 1996, pp. 43-57

[40] Y. Yamamoto; T. Kimura; H. van de Stadt Astron. Astrophys., QE-17 (1981), p. 341

[41] H.P. Yuen; V.W.S. Chan Opt. Lett., 8 (1983), p. 177

Cited by Sources:

Comments - Policy