An attempt is made to provide an assessment on the current state of photonic bandstructure theory, a field of research which is at the heart of rapid progress in photonic crystal research. First, different approaches to calculating photonic bandstructures as well as the optical properties of defect structures in photonic crystals are reviewed. Several highlights and applications of photonic bandstructure theory are presented that help to illustrate the tremendous progress the field has seen. Finally, perspectives of photonic bandstructure theory are briefly discussed and an attempt is made to identify possible future developments.
Nous tentons ici de proposer une évaluation de l'état actuel de la théorie de la structure des bandes photoniques, un domaine de recherche qui se situe au cœur des progrès rapides de la recherche sur les cristaux photoniques. Nous rappelons d'abord quelques approches du calcul des bandes photoniques ainsi que des propriétés optiques des structures des défauts dans les cristaux photoniques. On présente ensuite quelques points forts et applications de la théorie de la structure des bandes photoniques, afin d'illustrer les énormes progrès accomplis dans ce domaine. Enfin, nous discutons brièvement les perspectives de la théorie de la structure des bandes photoniques et tentons d'en identifier les futures applications.
Published online:
Keywords: cristal photonique, théorie électromagnétique, structure des bandes photoniques, bande interdite photonique
Kurt Busch 1
@article{CRPHYS_2002__3_1_53_0, author = {Kurt Busch}, title = {Photonic band structure theory: assessment and perspectives}, journal = {Comptes Rendus. Physique}, pages = {53--66}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01292-6}, language = {en}, }
Kurt Busch. Photonic band structure theory: assessment and perspectives. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 53-66. doi : 10.1016/S1631-0705(02)01292-6. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01292-6/
[1] Photonic Crystals: Molding the Flow of Light, Princeton University Press, New Jersey, 1995
[2] Photonic Band Gap Materials (C.M. Soukoulis, ed.), NATO ASI Series, E315, Kluwer, Dordrecht, 1996
[3] Special issue on photonic crystals, J. Lightwave Technol., Volume 17 (1999) no. 11, p. 1931
[4] Focus Issue, Photonic Bandgap Calculations, Optics Express, Volume 8 (2001) no. 3, p. 166
[5] Photonic Crystals and Light Localization in the 21st Century (C.M. Soukoulis, ed.), NATO Science Series, C563, Kluwer, Dordrecht, 2001
[6] Optical Properties of Photonic Crystals, Springer Series in Optical Sciences, 80, Springer-Verlag, Berlin, 2001
[7] Phys. Rev. Lett., 58 (1987), p. 2059
[8] Phys. Rev. Lett., 58 (1987), p. 2486
[9] Phys. Rev. Lett., 64 (1990), p. 2418
[10] Phys. Rev. Lett., 78 (1997), p. 1888
[11] Phys. Rev. Lett., 71 (1993), p. 1168
[12] Phys. Rev. Lett., 76 (1996), p. 2484
[13] Phys. Rev. Lett., 80 (1998), p. 960
[14] Nature, 407 (2000), p. 608
[15] Phys. Rev. Lett., 83 (1999), p. 967
[16] Phys. Rev. B, 58 (1998), p. 10096
[17] Phys. Rev. Lett., 65 (1990), p. 3152
[18] Phys. Rev. Lett., 67 (1991), p. 2295
[19] J. Lightwave Technol., 17 (1999), p. 1944
[20] J. Lightwave Technol., 17 (1999), p. 1948
[21] Science, 281 (1998), p. 802
[22] Nature, 405 (2000), p. 437
[23] Solid State Commun., 89 (1994), p. 413
[24] Phys. Rev. B, 45 (1992), p. 13962
[25] Prog. Quantum Electron., 18 (1994), p. 153
[26] Phys. Rev. B, 48 (1993), p. 7767
[27] Phys. Rev. Lett., 75 (1995), p. 1507
[28] Phys. Rev. B, 47 (1993), p. 4161
[29] Phys. Cond. Mater., 6 (1994), p. 171
[30] Phys. Rev. Lett., 69 (1993), p. 2772
[31] J. Mod. Opt., 41 (1994), p. 209
[32] Phys. Rev. B, 51 (1995), p. 16635
[33] Opt. Express, 3 (1998), p. 12
[34] Phys. Rev. B, 56 (1997), p. 4830
[35] Opt. Express, 8 (2001) no. 3, p. 167
[36] Phys. Rev. B, 50 (1994), p. 1988
[37] Appl. Phys. Lett., 65 (1994), p. 1466
[38] Phys. Rev. B, 56 (1997), p. 3517
[39] Phys. Rev. B, 57 (1998), p. R2006
[40] Appl. Phys. Lett., 77 (2000), p. 3490
[41] Science, 292 (2001), p. 1133
[42] Phys. Rev. E, 58 (1998), p. 3896
[43] Phys. Rev. Lett., 86 (2001), p. 4821
[44] Appl. Phys. Lett., 64 (1994), p. 3345
[45] et al. Appl. Phys. Lett., 69 (1995), p. 3399
[46] Appl. Phys. Lett., 68 (1996), p. 3525
[47] Phys. Rev. B, 63 (2001), p. 161101R
[48] J. Opt. Soc. Am., 69 (1979), p. 742
[49] J. Lightwave Technol., 17 (1999), p. 2032
[50] Appl. Phys. Lett., 74 (1999), p. 1370
[51] Appl. Phys. Lett., 74 (1999), p. 1212
[52] Opt. Commun., 161 (1999), p. 171
[53] J. Opt. Soc. Am. A, 17 (2000), p. 1012
[54] Phys. Rev. B, 44 (1991), p. 13772
[55] Phys. Rev. B, 48 (1993), p. 8434 (Erratum Phys. Rev. B, 55, 1997, pp. 15942)
[56] J. Lightwave Technol., 17 (1999), p. 2078
[57] Phys. Rev. Lett., 81 (1998), p. 1405
[58] Phys. Rev. B, 61 (2000), p. 4381
[59] Phys. Rev. B, 61 (2000), p. 11855
[60] J. Phys. Cond. Mater., 5 (1993), p. 8859
[61] Phys. Rev. B, 58 (1998), p. 9587
[62] Phys. Rev. Lett., 84 (2000), p. 2853
[63] Phys. Rev. E, 63 (2001), p. 046612
[64] Phys. Rev. Lett., 74 (1995), p. 526
[65] Computational Electrodynamics: the Finite-Difference Time-Domain Method, Artech House, Boston, 1995
[66] Phys. Rev. Lett., 77 (1996), p. 3787
[67] Opt. Lett., 23 (1998), p. 1855
[68] J. Opt. Soc. Am. B, 17 (2000), p. 2037
[69] Phys. Rev. Lett., 80 (1998), p. 956
[70] Phys. Rev. B, 63 (2001), p. 081105
[71] Phys. Rev. B, 59 (1999), p. 12767
[72] Phys. Rev. E, 60 (1999), p. 6118
[73] Phys. Rev. E, 62 (2000), p. 5711
[74] Phys. Rev. B, 61 (2000), p. 13458
[75] Phys. Rev. B, 60 (1999), p. 5751
[76] Phys. Rev. B, 62 (2000), p. 8212
[77] J. Lightwave Technol., 19 (2001), p. 861
[78] Appl. Phys. Lett., 78 (2001), p. 1466
Cited by Sources:
Comments - Policy