[Transitions de phase dans les agrégats]
The solid to liquid transition of clusters is discussed, mainly from an experimental point of view. An experiment is sketched which allows to measure the caloric curve of size selected sodium clusters. Melting temperatures, latent heats, and entropies of melting are determined in the size range between 55 and 357 atoms per cluster. The melting temperatures are about 30% less than the bulk value and fluctuate strongly, one additional atom can change it by ±10 K. Latent heats and entropies show a similar behaviour. From the change in entropy one can deduce the increase of phase space upon melting, which is about twelve orders of magnitude already for Na+55 and increases exponentially for larger clusters. The theoretical prediction that a finite particle can have a negative heat capacity is verified experimentally, showing that their are differences between a canonical and a microcanonical description. Finally the analogue of the boiling phase transition is shown for a finite system.
La fusion et l'ébullition des petites particules sont discutées comme exemple d'un changement de phase du premier ordre dans un système fini. Un bref résumé de travaux antérieurs est présenté, ainsi qu'une expérience permettant la mesure des courbes de chaleur spécifiques pour de petits agrégats de sodium, sélectionnés en taille et se propageant dans le vide. Températures de fusion, chaleurs latentes et entropies de fusion sont déterminées pour des agrégats comportant de 55 à 357 atomes. On examine le cas d'agrégats présentant une capacité calorifique négative ainsi que la possibilité d'étudier une transition liquide–gaz pour des systèmes finis et isolés.
Accepté le :
Publié le :
Mots-clés : changement de phase pour agrégats, transition solide–liquide
Martin Schmidt 1 ; Hellmut Haberland 1
@article{CRPHYS_2002__3_3_327_0, author = {Martin Schmidt and Hellmut Haberland}, title = {Phase transitions in clusters}, journal = {Comptes Rendus. Physique}, pages = {327--340}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01326-9}, language = {en}, }
Martin Schmidt; Hellmut Haberland. Phase transitions in clusters. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 327-340. doi : 10.1016/S1631-0705(02)01326-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01326-9/
[1] Rev. Mod. Phys., 58 (1986), p. 533
[2] J. Phys. D, 24 (1992), p. 247
[3] Rev. Mod. Phys., 65 (1993), p. 677
[4] Rev. Mod. Phys., 65 (1993), p. 611
[5] Metal Clusters (W. Ekardt, ed.), Wiley, 1999
[6] J. Chem. Phys., 95 (1991), p. 1225
[7] Sci. Amer., 263 (1990), p. 50
[8] J. Chem. Phys., 84 (1986) no. 5, p. 2783
[9] Proceedings of the LXXIII Les Houches Summer School (2000) on Atomic Clusters and Nanoparticles (C. Guet et al., eds.), Springer-Verlag, Heidelberg, 2001, p. 437
[10] Sci. Amer., 245 (1981)
[11] Z. Phys. Chem., 65 (1909), p. 1
[12] Z. Phys. Chem., 65 (1909), p. 545
[13] J. Phys. Soc. Jpn., 9 (1954) no. 3, p. 359
[14] Phys. Rev. A, 13 (1976), p. 229
[15] Phys. Rev. Lett., 77 (1996), p. 99
[16] et al. Phys. Rev. Lett., 85 (2000), p. 3560
[17] Phys. Rev. B, 57 (1998), p. 13430
[18] Phys. Rev. B, 42 (1990), p. 8548
[19] Philos. Mag. A, 71 (1995), p. 1135
[20] Nature, 269 (1977), p. 481
[21] Phys. Rev. Lett., 85 (2000), p. 4494
[22] Phys. Rev. Lett., 65 (1990), p. 1567
[23] Phys. Rev. Lett., 73 (1994), p. 2875
[24] J. Chem. Phys., 63 (1975), p. 2045
[25] Phys. Rev. Lett., 79 (1997), p. 1873
[26] J. Chem. Phys., 112 (2000), p. 2888
[27] J. Chem. Phys., 115 (2001), p. 385
[28] Phys. Rev. Lett., 59 (1987), p. 1895
[29] Phys. Rev. Lett., 61 (1988) no. 10, p. 1190
[30] Phys. Rev. Lett., 62 (1989), p. 140
[31] J. Chem. Phys., 100 (1994), p. 6974
[32] Phys. Rev. Lett., 75 (1995), p. 1731
[33] Phys. Rev. B, 59 (1999), p. 10970
[34] Surf. Sci., 106 (1981), p. 95
[35] J. Mol. Struct., 413 (1997), p. 615
[36] Phys. Rep., 273 (1996), p. 199
[37] Z. Phys. D, 40 (1997), p. 160
[38] Phys. Rev. Lett., 85 (2000), p. 2530
[39] Phys. World ( December 2000 ), p. 27
[40] Phys. Rev. Lett., 85 (2000), p. 1250
[41] Phys. Rev. Lett., 86 (2001), p. 1388
[42] Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, Lecture Notes in Physics, 66, World Scientific, Singapores, 2001
[43] Chaos Solitons Fractals, 13 (2002), p. 417 | arXiv
[44] Solid State Physics, Saunders College, Philadelphia, 1976
[45] Phys. Rev. Lett., 79 (1997), p. 99
[46] Nature, 393 (1998), p. 238
[47] Eur. Phys. J. D, 9 (2000), p. 1
[48] Proceedings of the LXXIII Les Houches Summer School (2000) on Atomic Clusters and Nanoparticles (C. Guet et al., eds.), Springer-Verlag, Heidelberg, 2001
[49] Phys. Rev. Lett., 67 (1991), p. 3290
[50] Phys. Rev. Lett., 69 (1992), p. 3212
[51] et al. The Physics and Chemistry of Clusters, Proceedings of Nobel Symposium, 117, World Scientific, Singapore, 2001, p. 326
[52] Science, 277 (1997), p. 1619
[53] Nature, 393 (1998), p. 212
[54] Clusters of Atoms and Molecules I (H. Haberland, ed.), Springer Series in Chemical Physics, 52, Springer-Verlag, Heidelberg, 1994
[55] Statistical Physics, Course of Theoretical Physics, 5, Pergamon Press, London, Paris, 1958 (1994)
[56] Clusters of Atoms and Molecules I (H. Haberland, ed.), Springer Series in Chemical Physics, 52, Springer-Verlag, Heidelberg, 1994 (part 2.7)
[57] Phys. Rev. Lett., 87 (2001), p. 203402
[58] J. Chem. Phys., 91 (1989), p. 1631
[59] J. Chem. Phys., 111 (1999), p. 6026
[60] Phys. Rev. Lett., 80 (1998), p. 3940
[61] Phys. Rev. B, 48 (1993), p. 2721
[62] J. Phys. Chem. B, 105 (2001), p. 2386
[63] Phys. Rev. B, 64 (2001), p. 04508
[64] Eur. Phys. D, 9 (1999), p. 451
[65] Phys. Rev. B, 62 (2000), p. 7602
[66] G. Wrigge, M. Astruc Hofmann, B. v. Issendorff, Phys. Rev. A, accepted for June 2002
[67] J. Chem. Phys., 92 (1990), p. 4473
[68] Phys. Rev. Lett., 86 (2001), p. 999
[69] The Physical Properties of Liquid Metals, Oxford Scientific Publications, Clarendon Press, Oxford, 1993
[70] Z. Phys., 235 (1970), p. 339
[71] Physica A, 263 (1999), p. 293
[72] et al. Phys. Lett. B, 473 (2000), p. 219
[73] Phys. Rev. C, 64 (2021), p. 044605
[74] Physica, 15 (1949), p. 951
[75] Phys. Rev. Lett., 86 (2001), p. 1191
[76] Phys. Rev. B, 57 (1998), p. 15519
[77] Phys. Rev. B, 60 (1999), p. 11734
[78] Phys. Rev. B, 49 (1994), p. 8491
[79] Phys. Rev. Lett., 87 (2001), p. 203401
[80] Z. Phys. D, 19 (1991), p. 1
[81] Clusters of Atoms and Molecules I (H. Haberland, ed.), Springer Series in Chemical Physics, 52, Springer-Verlag, Heidelberg, 1994, p. 273 (ff)
[82] Eur. Phys. J. E, 3 (2000), p. 165
[83] Colloid. Polym. Sci., 278 (2000), p. 608
- Microcanonical Monte Carlo of Lennard-Jones microclusters, The Journal of Chemical Physics, Volume 161 (2024) no. 11 | DOI:10.1063/5.0220788
- What Is Heat? Can Heat Capacities Be Negative?, Entropy, Volume 25 (2023) no. 3, p. 530 | DOI:10.3390/e25030530
- Molecular Dynamics Investigation on Thermal Stability and Shape Evolution of Pd-Au Heterostructured Nanorods: Implications for Catalysis, ACS Applied Nano Materials, Volume 4 (2021) no. 10, p. 11180 | DOI:10.1021/acsanm.1c02705
- A universal signature in the melting of metallic nanoparticles, Nanoscale, Volume 13 (2021) no. 2, p. 1172 | DOI:10.1039/d0nr06850k
- On the temporal spreading of the SARS-CoV-2, PLOS ONE, Volume 15 (2020) no. 10, p. e0240777 | DOI:10.1371/journal.pone.0240777
- The composition effect for the thermal properties of PdnAg(42-n)Pt13 ternary nanoalloys: a molecular dynamics study, Molecular Simulation, Volume 45 (2019) no. 13, p. 1004 | DOI:10.1080/08927022.2019.1627347
- Thermodynamics and the potential energy landscape: case study of small water clusters, Physical Chemistry Chemical Physics, Volume 21 (2019) no. 14, p. 7305 | DOI:10.1039/c9cp00474b
- Phase Transitions in Confinements: Controlling Solid to Fluid Transitions of Xenon Atoms in an On‐Surface Network, Small, Volume 15 (2019) no. 3 | DOI:10.1002/smll.201803169
- Microcanonical thermodynamics of three and four atoms, The Journal of Chemical Physics, Volume 150 (2019) no. 7, p. 074303 | DOI:10.1063/1.5080314
- Cluster melting: new, limiting, and liminal phenomena, Advances in Physics: X, Volume 3 (2018) no. 1, p. 1401487 | DOI:10.1080/23746149.2017.1401487
- The melting limit in sodium clusters, Theoretical Chemistry Accounts, Volume 137 (2018) no. 3 | DOI:10.1007/s00214-018-2210-7
- Investigation of Melting Dynamics of Hafnium Clusters, Journal of Chemical Information and Modeling, Volume 57 (2017) no. 3, p. 517 | DOI:10.1021/acs.jcim.6b00553
- Melting of Size-Selected Aluminum Clusters with 150–342 Atoms: The Transition to Thermodynamic Scaling, The Journal of Physical Chemistry C, Volume 121 (2017) no. 18, p. 10242 | DOI:10.1021/acs.jpcc.7b02768
- In command of non-equilibrium, Chemical Society Reviews, Volume 45 (2016) no. 10, p. 2768 | DOI:10.1039/c6cs00115g
- High-temperature sputtering of bimetallic clusters by low-energy argon clusters, Technical Physics Letters, Volume 42 (2016) no. 10, p. 975 | DOI:10.1134/s106378501610014x
- Thermodynamically equilibrium roton states of nanoparticles in molten and vapour phases, Philosophical Magazine, Volume 95 (2015) no. 15, p. 1717 | DOI:10.1080/14786435.2015.1045569
- Measuring the Heat Capacity of Large Isolated Molecules via Gas-Phase Collisions: C60, The Journal of Physical Chemistry C, Volume 119 (2015) no. 20, p. 11233 | DOI:10.1021/jp512276e
- A new perspective of shape recognition to discover the phase transition of finite‐size clusters, Journal of Computational Chemistry, Volume 35 (2014) no. 14, p. 1082 | DOI:10.1002/jcc.23593
- Phase Transitions and Dynamics of Clusters and of Thin Layers, Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles (2014), p. 231 | DOI:10.1039/bk9781849739078-00231
- Rationalizing the role of structural motif and underlying electronic structure in the finite temperature behavior of atomic clusters, The Journal of Chemical Physics, Volume 140 (2014) no. 15 | DOI:10.1063/1.4871118
- Ni-based nanoalloys: Towards thermally stable highly magnetic materials, The Journal of Chemical Physics, Volume 141 (2014) no. 21 | DOI:10.1063/1.4902541
- Melting of Size-Selected Gallium Clusters with 60–183 Atoms, The Journal of Physical Chemistry A, Volume 118 (2014) no. 27, p. 4900 | DOI:10.1021/jp503315r
- Structures, relative stabilities, and electronic properties of potassium clusters Kn (13⩽n⩽80), Computational and Theoretical Chemistry, Volume 1021 (2013), p. 135 | DOI:10.1016/j.comptc.2013.06.040
- Correlation between the variation in observed melting temperatures and structural motifs of the global minima of gallium clusters: An ab initio study, The Journal of Chemical Physics, Volume 138 (2013) no. 1 | DOI:10.1063/1.4772470
- Dehydrogenation of Benzene on Liquid Al100+, The Journal of Physical Chemistry A, Volume 117 (2013) no. 10, p. 2075 | DOI:10.1021/jp3113107
- Size-Dependent Hydrogenation of p-Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates, The Journal of Physical Chemistry C, Volume 117 (2013) no. 44, p. 22644 | DOI:10.1021/jp4041474
- Probing the Barrier for Internal Rotation of the Retinal Chromophore, Angewandte Chemie, Volume 124 (2012) no. 35, p. 8887 | DOI:10.1002/ange.201203746
- Probing the Barrier for Internal Rotation of the Retinal Chromophore, Angewandte Chemie International Edition, Volume 51 (2012) no. 35, p. 8757 | DOI:10.1002/anie.201203746
- Melting behavior of Ag14 cluster: An order parameter by instantaneous normal modes, The Journal of Chemical Physics, Volume 137 (2012) no. 24 | DOI:10.1063/1.4772096
- Thermodynamic Properties of Ga27Si3 Cluster Using Density Functional Molecular Dynamics, The Journal of Physical Chemistry A, Volume 116 (2012) no. 1, p. 11 | DOI:10.1021/jp2034505
- Discovery of Magnetic Superatoms and Assessment of van der Waals Dispersion Effects in Csn Clusters, The Journal of Physical Chemistry C, Volume 116 (2012) no. 12, p. 6841 | DOI:10.1021/jp2119179
- Melting of Argon Cluster: Dependence of Caloric Curves on MD Simulation Parameters, World Journal of Condensed Matter Physics, Volume 02 (2012) no. 03, p. 139 | DOI:10.4236/wjcmp.2012.23023
- Melting and Freezing of Metal Clusters, Annual Review of Physical Chemistry, Volume 62 (2011) no. 1, p. 151 | DOI:10.1146/annurev-physchem-032210-103454
- A molecular dynamics study of cooling rate during solidification of metal nanoparticles, Chemical Physics Letters, Volume 502 (2011) no. 1-3, p. 82 | DOI:10.1016/j.cplett.2010.12.020
- The Route to a Feasible Hydrogen‐Storage Material: MOFs versus Ammonia Borane, Chemistry – A European Journal, Volume 17 (2011) no. 37, p. 10184 | DOI:10.1002/chem.201003364
- Density functional investigations on structural and electronic properties of anionic and neutral sodium clusters NaN(N= 40–147): comparison with the experimental photoelectron spectra, Journal of Physics: Condensed Matter, Volume 23 (2011) no. 40, p. 405303 | DOI:10.1088/0953-8984/23/40/405303
- Vibrational and thermodynamic properties of metal clusters with up to 150 atoms calculated by the embedded-atom method, Physical Review B, Volume 83 (2011) no. 15 | DOI:10.1103/physrevb.83.155413
- Excess pressure of the phonon gas in nanocrystals, Solid State Communications, Volume 151 (2011) no. 5, p. 360 | DOI:10.1016/j.ssc.2010.12.022
- First-principles determination of the structure of NaN and
NaN− clusters with up to 80 atoms, The Journal of Chemical Physics, Volume 134 (2011) no. 16 | DOI:10.1063/1.3582911 - Comparative study of cluster Ag17Cu2 by instantaneous normal mode analysis and by isothermal Brownian-type molecular dynamics simulation, The Journal of Chemical Physics, Volume 135 (2011) no. 9 | DOI:10.1063/1.3628669
- Stepwise Melting in Na41+: A First-Principles Critical Analysis of Available Experimental Results, The Journal of Physical Chemistry C, Volume 115 (2011) no. 27, p. 13180 | DOI:10.1021/jp2020484
- Phase transitions, coexistence and crystal growth dynamics in ionic nanoclusters: Theory and simulation, Journal of Molecular Structure: THEOCHEM, Volume 946 (2010) no. 1-3, p. 94 | DOI:10.1016/j.theochem.2010.01.005
- Activation of Dinitrogen by Solid and Liquid Aluminum Nanoclusters: A Combined Experimental and Theoretical Study, Journal of the American Chemical Society, Volume 132 (2010) no. 37, p. 12906 | DOI:10.1021/ja103356r
- Introduction and Some Physical Principles, Nanoscience (2010), p. 1 | DOI:10.1007/978-3-642-10559-3_1
- Phase transition in substrate-supported molybdenumnanoparticles: a molecular dynamics study, Phys. Chem. Chem. Phys., Volume 12 (2010) no. 3, p. 731 | DOI:10.1039/b919869e
- The thermodynamic properties of nanoparticles with the characteristic sizes less than 10 nm, Physics Letters A, Volume 374 (2010) no. 45, p. 4622 | DOI:10.1016/j.physleta.2010.09.039
- Melting Dramatically Enhances the Reactivity of Aluminum Nanoclusters, Journal of the American Chemical Society, Volume 131 (2009) no. 7, p. 2446 | DOI:10.1021/ja809516h
- Hyperspherical and related views of the dynamics of nanoclusters, Physica Scripta, Volume 80 (2009) no. 4, p. 048103 | DOI:10.1088/0031-8949/80/04/048103
- Premelting and Postmelting in Clusters, Physical Review Letters, Volume 102 (2009) no. 4 | DOI:10.1103/physrevlett.102.043401
- Phase transitions in various kinds of clusters, Physics-Uspekhi, Volume 52 (2009) no. 2, p. 137 | DOI:10.3367/ufne.0179.200902b.0147
- Stability of gold cages (Au16 and Au17) at finite temperature, Pramana, Volume 72 (2009) no. 5, p. 845 | DOI:10.1007/s12043-009-0076-x
- Phase coexistence in melting aluminum clusters, The Journal of Chemical Physics, Volume 130 (2009) no. 20 | DOI:10.1063/1.3129525
- Metal clusters with hidden ground states: Melting and structural transitions in Al115+, Al116+, and Al117+, The Journal of Chemical Physics, Volume 131 (2009) no. 12 | DOI:10.1063/1.3224124
- Electronic effects on melting: Comparison of aluminum cluster anions and cations, The Journal of Chemical Physics, Volume 131 (2009) no. 4 | DOI:10.1063/1.3157263
- Building Clusters Atom-by-Atom: From Local Order to Global Order, The Journal of Physical Chemistry A, Volume 113 (2009) no. 12, p. 2659 | DOI:10.1021/jp809729p
- Phase transitions in different types of clusters, Uspekhi Fizicheskih Nauk, Volume 179 (2009) no. 2, p. 147 | DOI:10.3367/ufnr.0179.200902b.0147
- Size-dependent ordering and Curie temperatures of FePt nanoparticles, Journal of Applied Physics, Volume 103 (2008) no. 12 | DOI:10.1063/1.2946724
- Nanosolids, Slushes, and Nanoliquids: Characterization of Nanophases in Metal Clusters and Nanoparticles, Journal of the American Chemical Society, Volume 130 (2008) no. 38, p. 12698 | DOI:10.1021/ja802389d
- Chapter 2 Shell Models of Isolated Clusters, Metallic Nanoparticles, Volume 5 (2008), p. 17 | DOI:10.1016/s1570-002x(08)00202-4
- Nanostructures: Compositions, structure, and classification, Russian Journal of Inorganic Chemistry, Volume 53 (2008) no. 14, p. 2103 | DOI:10.1134/s0036023608140027
- Statistics of partitions of the kinetic energy of small nanoclusters, Russian Journal of Physical Chemistry B, Volume 2 (2008) no. 6, p. 947 | DOI:10.1134/s1990793108060134
- Peculiar thermodynamic properties of LJ N (N = 39–55) clusters, The European Physical Journal D, Volume 48 (2008) no. 2, p. 221 | DOI:10.1140/epjd/e2008-00094-2
- The effects of electronic structure and charged state on thermodynamic properties: An ab initio molecular dynamics investigations on neutral and charged clusters of Na39, Na40, and Na41, The Journal of Chemical Physics, Volume 128 (2008) no. 10 | DOI:10.1063/1.2839278
- Metal clusters that freeze into high energy geometries, The Journal of Chemical Physics, Volume 129 (2008) no. 1 | DOI:10.1063/1.2939579
- A molecular dynamics study of the phase transition in bcc metal nanoparticles, The Journal of Chemical Physics, Volume 129 (2008) no. 14 | DOI:10.1063/1.2991435
- Correlation between the latent heats and cohesive energies of metal clusters, The Journal of Chemical Physics, Volume 129 (2008) no. 14 | DOI:10.1063/1.2987720
- Size-Dependent Deformation and Adsorption Behavior of Carbon Monoxide, Hydrogen, and Carbon on Pyramidal Copper Clusters, The Journal of Physical Chemistry C, Volume 112 (2008) no. 20, p. 7672 | DOI:10.1021/jp800441w
- Size and Structural Dependence of Cohesive Energy in Cu, The Journal of Physical Chemistry C, Volume 112 (2008) no. 48, p. 18840 | DOI:10.1021/jp7114143
- GLOBAL MINIMA FOR PdN (N = 5–80) CLUSTERS DESCRIBED BY SUTTON–CHEN POTENTIAL, International Journal of Modern Physics C, Volume 18 (2007) no. 08, p. 1351 | DOI:10.1142/s0129183107011376
- Ion calorimetry: Using mass spectrometry to measure melting points, Journal of the American Society for Mass Spectrometry, Volume 18 (2007) no. 1, p. 74 | DOI:10.1016/j.jasms.2006.08.019
- Chapter 3 Computer simulation of the solid-liquid phase transition in alkali metal nanoparticles, Nanomaterials: Design and Simulation, Volume 18 (2007), p. 59 | DOI:10.1016/s1380-7323(06)80005-1
- Effects of geometric and electronic structure on the finite temperature behavior ofNa58,Na57, andNa55cluster, Physical Review B, Volume 75 (2007) no. 12 | DOI:10.1103/physrevb.75.125427
- Nanoscale alloys and core-shell materials: Model predictions of the nanostructure and mechanical properties, Physical Review B, Volume 75 (2007) no. 22 | DOI:10.1103/physrevb.75.224102
- Electronic structures, equilibrium geometries, and finite-temperature properties ofNan(n=39–55)from first principles, Physical Review B, Volume 76 (2007) no. 16 | DOI:10.1103/physrevb.76.165414
- Melting transitions in aluminum clusters: The role of partially melted intermediates, Physical Review B, Volume 76 (2007) no. 5 | DOI:10.1103/physrevb.76.054113
- Density functional analysis of the structural evolution of Gan (n=30–55) clusters and its influence on the melting characteristics, The Journal of Chemical Physics, Volume 127 (2007) no. 5 | DOI:10.1063/1.2759215
- Melting of Alloy Clusters: Effects of Aluminum Doping on Gallium Cluster Melting, The Journal of Physical Chemistry A, Volume 111 (2007) no. 33, p. 8056 | DOI:10.1021/jp068655v
- Molecular dynamics simulation of the melting-like transition in K1Na54, Computational Materials Science, Volume 35 (2006) no. 3, p. 174 | DOI:10.1016/j.commatsci.2004.10.011
- Invariant energy partitions in chemical reactions and cluster dynamics simulations, Computational Materials Science, Volume 35 (2006) no. 3, p. 187 | DOI:10.1016/j.commatsci.2004.11.008
- Thermodynamics of small platinum clusters, Computational Materials Science, Volume 35 (2006) no. 3, p. 192 | DOI:10.1016/j.commatsci.2004.08.016
- FISSION OF METAL CLUSTERS, International Journal of Modern Physics E, Volume 15 (2006) no. 01, p. 153 | DOI:10.1142/s0218301306003990
- Ab initiostudy of the atomic motion in liquid metal surfaces: comparison with Lennard-Jones systems, Journal of Physics: Condensed Matter, Volume 18 (2006) no. 48, p. 11021 | DOI:10.1088/0953-8984/18/48/030
- Ab initiocalculations of the stability of a vacancy in Na clusters and correlation with melting, Physical Review B, Volume 73 (2006) no. 3 | DOI:10.1103/physrevb.73.035425
- Finite-temperature behavior of small silicon and tin clusters: Anab initiomolecular dynamics study, Physical Review B, Volume 73 (2006) no. 4 | DOI:10.1103/physrevb.73.045419
- Surface structure in simple liquid metals: An orbital-free first-principles study, Physical Review B, Volume 74 (2006) no. 1 | DOI:10.1103/physrevb.74.014207
- Small sodium clusters that melt gradually: Melting mechanisms inNa30, Physical Review B, Volume 74 (2006) no. 11 | DOI:10.1103/physrevb.74.115403
- Spectroscopic signatures of nonrigidity: Algebraic analyses of infrared and Raman transitions in nonrigid species, Chemical Physics Letters, Volume 414 (2005) no. 4-6, p. 398 | DOI:10.1016/j.cplett.2005.07.119
- Size-dependent melting of Bi nanoparticles, Journal of Applied Physics, Volume 97 (2005) no. 3 | DOI:10.1063/1.1832741
- Melting dynamics and isomer distributions of small metal clusters, New Journal of Physics, Volume 7 (2005), p. 60 | DOI:10.1088/1367-2630/7/1/060
- Prediction of intercluster separation and Schottky-type heat-capacity contribution in surface-segregated binary and ternary alloy nanocluster systems, Physical Review B, Volume 71 (2005) no. 12 | DOI:10.1103/physrevb.71.125426
- First principles calculations of melting temperatures for free Na clusters, Physical Review B, Volume 71 (2005) no. 15 | DOI:10.1103/physrevb.71.155407
- Tin clusters that do not melt: Calorimetry measurements up to650K, Physical Review B, Volume 71 (2005) no. 7 | DOI:10.1103/physrevb.71.073410
- Structural and thermodynamic properties ofAg‐Conanoclusters, Physical Review B, Volume 72 (2005) no. 11 | DOI:10.1103/physrevb.72.115434
- Structural and thermal behavior of compact core-shell nanoparticles: Core instabilities and dynamic contributions to surface thermal stability, Physical Review B, Volume 72 (2005) no. 20 | DOI:10.1103/physrevb.72.205420
- Geometrical and statistical factors in fission of small metal clusters, Physical Review B, Volume 72 (2005) no. 8 | DOI:10.1103/physrevb.72.085433
- Melting, Premelting, and Structural Transitions in Size-Selected Aluminum Clusters with around 55 Atoms, Physical Review Letters, Volume 94 (2005) no. 17 | DOI:10.1103/physrevlett.94.173401
- Anomalous Size Dependence in the Melting Temperatures of Free Sodium Clusters: An Explanation for the Calorimetry Experiments, Physical Review Letters, Volume 94 (2005) no. 23 | DOI:10.1103/physrevlett.94.233401
- Melting of Sodium Clusters: Where Do the Magic Numbers Come from?, Physical Review Letters, Volume 94 (2005) no. 3 | DOI:10.1103/physrevlett.94.035701
- Ultrahigh vacuum cluster deposition source for spectroscopy with synchrotron radiation, Review of Scientific Instruments, Volume 76 (2005) no. 6 | DOI:10.1063/1.1921551
- Prediction of compositional ordering and separation in alloy nanoclusters, Surface Science, Volume 584 (2005) no. 1, p. 41 | DOI:10.1016/j.susc.2004.11.047
- First-principles investigation of finite-temperature behavior in small sodium clusters, The Journal of Chemical Physics, Volume 123 (2005) no. 16 | DOI:10.1063/1.2076607
- Amino-acid and water molecules adsorbed on water clusters in a beam, The Journal of Chemical Physics, Volume 123 (2005) no. 7 | DOI:10.1063/1.1999587
- Second-Order Phase Transitions in Amorphous Gallium Clusters, The Journal of Physical Chemistry B, Volume 109 (2005) no. 35, p. 16575 | DOI:10.1021/jp052887x
- Nanosized metal clusters: Challenges and opportunities, JOM, Volume 56 (2004) no. 1, p. 40 | DOI:10.1007/s11837-004-0271-7
- Gallium Cluster “Magic Melters”, Journal of the American Chemical Society, Volume 126 (2004) no. 28, p. 8628 | DOI:10.1021/ja0477423
- In situ transmission electron microscopy of nano-sized metal clusters, MRS Proceedings, Volume 839 (2004) | DOI:10.1557/proc-839-p7.4
- Molecular dynamics simulation of the melting behaviour of 12-, 13-, 14-atom icosahedral platinum clusters, Modelling and Simulation in Materials Science and Engineering, Volume 12 (2004) no. 6, p. 1131 | DOI:10.1088/0965-0393/12/6/007
- Increase in thermal stability induced by organic coatings on nanoparticles, Physical Review B, Volume 70 (2004) no. 20 | DOI:10.1103/physrevb.70.205419
- Why Do Gallium Clusters Have a Higher Melting Point than the Bulk?, Physical Review Letters, Volume 92 (2004) no. 13 | DOI:10.1103/physrevlett.92.135506
- Phase-Space Invariants as Indicators of the Critical Behavior of Nanoaggregates, Physical Review Letters, Volume 93 (2004) no. 11 | DOI:10.1103/physrevlett.93.113402
- Melting, freezing, sublimation, and phase coexistence in sodium chloride nanocrystals, The Journal of Chemical Physics, Volume 121 (2004) no. 13, p. 6502 | DOI:10.1063/1.1786921
- Niobium nanoclusters studied with in situ transmission electron microscopy, Applied Physics Letters, Volume 83 (2003) no. 19, p. 3909 | DOI:10.1063/1.1625789
- Soft landing of size-selected clusters in rare gas matrices, Low Temperature Physics, Volume 29 (2003) no. 3, p. 223 | DOI:10.1063/1.1542443
- Structural Stability of Nano-Sized Clusters, MRS Proceedings, Volume 791 (2003) | DOI:10.1557/proc-791-q2.8
- Negative heat capacity of sodium clusters, Physical Review B, Volume 67 (2003) no. 16 | DOI:10.1103/physrevb.67.165401
- Hot and Solid Gallium Clusters: Too Small to Melt, Physical Review Letters, Volume 91 (2003) no. 21 | DOI:10.1103/physrevlett.91.215508
- Thermodynamic superheating of low-dimensional metals embedded in matrix, Vacuum, Volume 72 (2003) no. 3, p. 249 | DOI:10.1016/s0042-207x(03)00148-9
- Size-dependent cohesive energy of nanocrystals, Chemical Physics Letters, Volume 366 (2002) no. 5-6, p. 551 | DOI:10.1016/s0009-2614(02)01641-x
Cité par 118 documents. Sources : Crossref
Commentaires - Politique