Organic photovoltaic solar cells bere an important potential of development in the search for low-cost modules for the production of domestic electricity. We review the principles and techniques needed for their development: organic semiconductors, their transport properties and photophysical characteristics, photovoltaic molecule and polymer structures, device technologies, electrical and optical behaviour of the cells, state of the art, limitations and perspectives. Despite some recent record efficiencies, research on organic solar cells is still in its infancy when stability and efficiency have to be compared with the performances of silicon cells. A nominal 10% solar efficiency is the research target for the next few years.
Les cellules solaires photovoltaïques organiques sont porteuses d'un potentiel de développement important dans la recherche de modules bas coût pour la production d'électricité domestique. Nous examinons les principes et techniques nécessaires à leur développement : les semi-conducteurs organiques, leurs propriétés de transport et leurs caractéristiques photo-physiques, les matériaux photovoltaı̈ques organiques, la technologie des dispositifs, le comportement électrique et optique des cellules, l'état de l'art, les limitations et les perspectives. Malgré de récents records, la recherche sur les cellules solaires organiques en est toujours à ses débuts lorsqu'on la compare au silicium en termes de performances en stabilité et en efficacité. Un rendement solaire nominal voisin de 10 % sera l'objectif des recherches pour les années qui viennent.
Published online:
Keywords: cellule solaire photovoltaïque, semi-conducteur organique, ingénierie moléculaire, photo-génération
Jean-Michel Nunzi 1
@article{CRPHYS_2002__3_4_523_0, author = {Jean-Michel Nunzi}, title = {Organic photovoltaic materials and devices}, journal = {Comptes Rendus. Physique}, pages = {523--542}, publisher = {Elsevier}, volume = {3}, number = {4}, year = {2002}, doi = {10.1016/S1631-0705(02)01335-X}, language = {en}, }
Jean-Michel Nunzi. Organic photovoltaic materials and devices. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 523-542. doi : 10.1016/S1631-0705(02)01335-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01335-X/
[1] Two-layer organic photovoltaic cell, Appl. Phys. Lett., Volume 48 (1986), p. 183
[2] Efficient photovoltaic energy conversion in pentacene-based heterojunctions, Appl. Phys. Lett., Volume 77 (2000), p. 2473
[3] C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 493
[4] Electroluminescence in organics, J. Phys. D, Volume 32 (1999), p. R179
[5] Molecular Semiconductors: Photoelectrical Properties and Solar Cells, Springer, 1985
[6] K. Petritsch, Organic solar cell architectures, PhD thesis, Graz, 2000
[7] C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 479
[8] Electronic Materials: The Oligomer Approach, Wiley–VCH, Weinheim, 1998
[9] Adv. Mater., 11 (1999), p. 371
[10] Appl. Phys. Lett., 64 (1994), p. 815
[11] Organic Electroluminescent Materials and Devices (S. Miyata; H.S. Nalwa, eds.), Gordon and Breach, Amsterdam, 1997, p. 203
[12] J. Appl. Phys., 83 (1998), p. 4236
[13] J. Appl. Phys., 83 (1998), p. 2343
[14] Chem. Mater., 12 (2000), p. 2542
[15] An all-columnar bilayer light-emitting diode, Synth. Met., Volume 111–112 (2000), p. 15
[16] J. Mater. Chem., 10 (2000), p. 169
[17] Optical, and Magnetic Properties of Organic Solid-State Materials V, Materials Research Society Symposium Proceedings, 488, MRS, Boston, 1997, p. 527
[18] Adv. Mater., 8 (1996), p. 146
[19] Thin Solid. Films, 284-285 (1996), p. 901
[20] Appl. Phys. Lett., 72 (1998), p. 2639
[21] Langmuir, 16 (2000), p. 4309
[22] Adv. Mater., 9 (1997), p. 222
[23] IEEE Proceedings, 4 (1998) no. 1
[24] J. Mater. Sci., 17 (1982), p. 2780
[25] C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 425
[26] The Molecular Orbital Theory of Conjugated Systems, Benjamin, New York, 1966
[27] Les sources de lumière, traité d'optoélectronique (J.P. Goure, ed.), Hermes, Paris, 2001
[28] Chem. Phys. Lett., 192 (1992), p. 566
[29] Nonlinear Opt., 10 (1995), p. 273
[30] Synth. Met., 100 (1999), p. 29
[31] Introduction à la physique de l'état solide, Bordas, Paris, 1972
[32] Phys. Rev. B, 15 (1977), p. 909
[33] Phys. Rev. Lett., 42 (1979), p. 1698
[34] J. Chem. Phys., 77 (1982), p. 371
[35] Handbook of Conducting Polymers (T.A. Skotheim, ed.), M. Dekker, 1998 (Chapter 30)
[36] Phys. Stat. Sol. B, 114 (1982), p. 561
[37] Science, 289 (2000), p. 599
[38] C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 381
[39] , Handbook of Conducting Polymers, 2, M. Dekker, 1996 (Chapter 26)
(T.A. Skotheim, ed.)[40] Photoconductivity and Related Phenomena (J. Mort; D.M. Pai, eds.), Elsevier, 1976, p. 63
[41] Appl. Phys. Lett., 66 (1995), p. 3618
[42] Adv. Mater., 10 (1998), p. 365
[43] Appl. Phys. Lett., 68 (1996), p. 3308
[44] Appl. Phys. Lett., 77 (2000), p. 1852
[45] Appl. Phys. Lett., 74 (1999), p. 1400
[46] Photoconductivity and Related Phenomena (J. Mort; D.M. Pai, eds.), Elsevier, 1976, p. 63
[47] Phys. Rev. B, 55 (1997), p. 15587
[48] Science, 288 (2000), p. 656
[49] Science, 287 (2000), p. 1022
[50] Synth. Met., 109 (2000), p. 173
[51] Synth. Met., 111–112 (2000), p. 129
[52] Nature, 410 (2001), p. 189
[53] Appl. Phys. Lett., 79 (2001), p. 2582
[54] Adv. Mater., 13 (2001), p. 504
[55] Adv. Mater., 9 (1997), p. 809
[56] Chem. Phys. Lett., 339 (2001), p. 161
[57] Chem. Phys. Lett., 277 (1997), p. 137
[58] Modern Molecular Photochemistry, University Science Books, Mill Valley, CA, 1991
[59] J. Mater. Chem., 10 (2000), p. 1471
[60] C. R. Acad. Sci. Paris Sér. IV, 1 (2000), p. 447
[61] Chem. Rev., 97 (1997), p. 173
[62] Les Composants Electroniques Organiques, États-Unis Microélectronique 24 (2001)
[63] The use of combinatorial materials development for polymer solar cells, Adv. Mater. Opt. Electron., Volume 10 (2000), p. 47
[64] Polymeric photovoltaic materials, Current Opinion Solid State Mater. Sci., Volume 4 (1999), p. 373
[65] Organic photoconductive materials: recent trends and developments, Chem. Rev., Volume 93 (1993), p. 449
[66] Organic solar cells: a review, Solar Cells, Volume 8 (1983), p. 47
[67] L. Sicot, Étude et réalisation de cellules photovoltaïques en polymère, PhD thesis, Orsay, 1999
[68] Monochromatic versus solar efficiencies of organic solar cells, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 87
[69] Physics of Semiconductor Devices, Wiley, 1981
[70] Photopiles solaires, Presses polytechniques et universitaires romandes, 1997
[71] The effect of fullerene doping on photoelectric conversion using titanyl phthalocyanine and a perylene pigment, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 1
[72] Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 61
[73] Self-organized discotic liquid crystals for high-efficiency organic photovoltaics, Science, Volume 293 (2001), p. 1119
[74] Exciton diffusion and optical interference in organic donor–acceptor photovoltaic cells, J. Appl. Phys., Volume 90 (2001), p. 3623
[75] Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells, Appl. Phys. Lett., Volume 79 (2001), p. 126
[76] Electronic Processes in Organic Crystals, Clarendon Press, Oxford, 1982
[77] Adv. Mater., 3 (1991), p. 129
[78] Laminated fabrication of polymeric photovoltaic diodes, Nature, Volume 395 (1998), p. 257
[79] Plastic solar cell, Photon, Volume 2 (1999)
[80] Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 37
[81] Efficient organic photovoltaic diodes based on doped pentacene, Nature, Volume 403 (2000), p. 408
[82] Photovoltaic properties of Schottky and p–n type solar cells based on polythiophene, J. Appl. Phys., Volume 90 (2001), p. 1047
[83] Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study, Appl. Phys. Lett., Volume 73 (1998), p. 3202
[84] Photoemission study of the ITO/triphenylene/perylene/Al interfaces, Appl. Surf. Sci., Volume 174 (2001), p. 310
[85] Self-organizing liquid crystal perylene diimide thin films: spectroscopy, crystallinity, and molecular orientation, J. Phys. Chem. B, Volume 106 (2002), p. 1307
[86] Columnar mesophase from a new disclike mesogen based on a 3,5-dicyano-2,4,6-tristyrylpyridine core, Chem. Mater., Volume 14 (2002), p. 375
[87] Nature, 353 (1991), p. 737
[88] Science, 258 (1992), p. 1474
[89] Plastic solar cells, Adv. Funct. Mater., Volume 11 (2001), p. 15
[90] Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices, Adv. Funct. Mater., Volume 11 (2001), p. 420
[91] Fullerene – Oligophenylenevinylene hybrids: synthesis, electronic properties, and incorporation in photovoltaic devices, J. Am. Chem. Soc., Volume 122 (2000), p. 7467
[92] A new building block for diels-alder reactions in p-extended tetrathiafulvalenes: synthesis of a novel electroactive C60-based dyad, Organ. Lett., Volume 1 (1999), p. 2005
[93] Stability and photodegradation mechanisms of conjugated polymer/fullerene plastic solar cells, Solar Energy Mater. Solar Cells, Volume 61 (2000), p. 35
[94] Interpenetrating lattices – materials of the future, Adv. Mater., Volume 13 (2001), p. 525
[95] Efficient titanium oxide/conjugated polymer photovoltaics for solar energy conversion, Adv. Mater., Volume 12 (2000), p. 1689
[96] Shape control of CdSe nanocrystals, Nature, Volume 404 (2000), p. 59
[97] Hybrid nanorod–polymer solar cells, Science, Volume 295 (2002), p. 2425
[98] C. Sentein, C. Fiorini, A. Lorin, J.M. Nunzi, Dispositif semiconducteur en polymère comportant au moins une fonction redresseuse et procédé de fabrication d'un tel dispositif, European Patent, 1997
[99] Study of orientation induced molecular rectification in polymer films, Opt. Mater., Volume 9 (1998), p. 316
[100] Improvement of the photovoltaic properties of polythiophene-based cells, Solar Energy Mater. Solar Cells, Volume 63 (2000), p. 49
[101] Poling induced improvement of organic-polymer device efficiency, Synth. Met., Volume 102 (1999), pp. 989-990
[102] Oriented polymer photovoltaic cells, SPIE Proc., 4108, 2001, p. 41
[103] Recoverable degradation phenomena of quantum efficiency in organic EL devices, Synth. Met., Volume 111–112 (2000), p. 245
[104] Accurate efficiency determination and stability studies of conjugated polymer/fullerene solar cells, Thin Solid Films, Volume 403–404 (2002), p. 223
[105] Electrode interface effects on ITO/polymer/metal light emitting diodes, Appl. Phys. Lett., Volume 69 (1996), p. 1071
[106] Photovoltaic materials, past, present, future, Solar Energy Mat. Solar Cells, Volume 62 (2000), p. 1
Cited by Sources:
Comments - Policy