Comptes Rendus
Photonique moleculaire : matériaux, physique et composants/Molecular photonics: materials, physics and devices
Electro-optic polymer based devices and technology for optical telecommunication
[Composants à base de polymères électro-optiques pour les télécommunications optiques]
Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 543-554.

Les composants à base de polymères pour l'optique intégrée sont particulièrement intéressants pour les systèmes de télécommunications en particulier par leur procédé de fabrication simplifié et à bas coût. Leur grande bande passante résulte en partie de leur faible constante diélectrique ainsi que d'une dispersion très réduite depuis les signaux continus jusqu'aux fréquences optiques. Nous détaillons tout d'abord les étapes de modélisation concernant de façon conjointe les aspects optiques et électriques. Le procédé de fabrication de ces composants est exposé dans une seconde partie. Enfin, des résultats originaux seront présentés concernant un modulateur insensible à la polarisation, un commutateur intégrant une jonction en X asymétrique ainsi qu'un convertisseur optique hyperfréquence utilisant les propriétés non linéaires de génération de différence de fréquences.

Electro-optic polymer waveguide devices are very attractive for optical communication systems, because of their potentially simple and low-cost fabrication procedure. High bandwidth devices are enabled by the low dielectric constant of polymers with negligible dispersion from DC to optical frequencies. We first detail the modelization steps relating to the optical and electrical aspects of devices. We then outline the different steps of the fabrication process of electro-optic polymer based devices. By way of illustrating these considerations, we present some original realizations namely polarization insensitive modulators, switching devices using an asymetric X coupler and optic to RF converters based on difference frequency mixing.

Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01334-8
Keywords: electro-optic polymers, integrated optics, devices, optical telecommunication
Mot clés : polymères électro-optiques, optique intégrée, composants, télécommunications optiques
Patrick Labbé 1, 2 ; Ariela Donval 1 ; R. Hierle 1 ; Eric Toussaere 1 ; Joseph Zyss 1

1 Laboratoire de photonique quantique et moléculaire, UMR-CNRS 8537, École normale supérieure de Cachan, 61, av. Du Président Wilson, 94235 Cachan, France
2 Centre de recherche Motorola, Espace technologique de Saint-Aubin, 91193 Gif-sur-Yvette, France
@article{CRPHYS_2002__3_4_543_0,
     author = {Patrick Labb\'e and Ariela Donval and R. Hierle and Eric Toussaere and Joseph Zyss},
     title = {Electro-optic polymer based devices and technology for optical telecommunication},
     journal = {Comptes Rendus. Physique},
     pages = {543--554},
     publisher = {Elsevier},
     volume = {3},
     number = {4},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01334-8},
     language = {en},
}
TY  - JOUR
AU  - Patrick Labbé
AU  - Ariela Donval
AU  - R. Hierle
AU  - Eric Toussaere
AU  - Joseph Zyss
TI  - Electro-optic polymer based devices and technology for optical telecommunication
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 543
EP  - 554
VL  - 3
IS  - 4
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01334-8
LA  - en
ID  - CRPHYS_2002__3_4_543_0
ER  - 
%0 Journal Article
%A Patrick Labbé
%A Ariela Donval
%A R. Hierle
%A Eric Toussaere
%A Joseph Zyss
%T Electro-optic polymer based devices and technology for optical telecommunication
%J Comptes Rendus. Physique
%D 2002
%P 543-554
%V 3
%N 4
%I Elsevier
%R 10.1016/S1631-0705(02)01334-8
%G en
%F CRPHYS_2002__3_4_543_0
Patrick Labbé; Ariela Donval; R. Hierle; Eric Toussaere; Joseph Zyss. Electro-optic polymer based devices and technology for optical telecommunication. Comptes Rendus. Physique, Volume 3 (2002) no. 4, pp. 543-554. doi : 10.1016/S1631-0705(02)01334-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01334-8/

[1] U. Gliese; S. Norskov; T.N. Nielsen Chromatic dispersion in fiber-optic microwave and millimeter wave links, IEEE Trans. Microwave Theory Techn., Volume MTT-40 (1996) no. 10, pp. 1716-1724

[2] L. du Mouza et al. 1.28 Tbit/s (32×40 Gbit) WDM transmission over 2400 km of Teralight/sup TM/Reverse Teralight fibres using distributed all Raman amplification, Electron. Lett., Volume 37 (2001) no. 21, pp. 1300-1302

[3] R.C. Alferness Waveguide electro-optic modulators, IEEE Trans. Microwave Theory Techn., Volume MTT-30 (1982) no. 8, pp. 1121-1137

[4] R. Yoshimura; M. Hikita; S. Tomaru; S. Imamura Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate, J. Lightwave Technol., Volume 16 (1998) no. 6, pp. 1030-1037

[5] M. Ahleim; M. Barzoukas; P. Bedworth; M. Blanchard-Desce; A. Fort; Z.Y. Hu; S.R. Marder; J.W. Perry; C. Runser; M. Staehelin; B. Zysset Chromophores with strong heterocyclic acceptors: a poled polymer with a large electro-optic coefficient, Science, Volume 271 (1996), pp. 335-337

[6] W. Burns; A. Milton Mode conversion in planar-dielectric separating waveguides, IEEE J. Quantum Electron., Volume QE-11 (1975), pp. 32-39

[7] R. Levenson; J. Liang; C. Rossier; R. Hierle; E. Toussaere; N. Bouadma; J. Zyss Advances in organic polymer-based optoelectronics, Polymers for Second-Order Nonlinear Optics, Chapter 32, American Chemical Society, 1995, pp. 437-455

[8] J.L. Oudar Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds, J. Chem. Phys., Volume 67 (1977) no. 2, pp. 446-457

[9] S. Yilmaz; W. Wirges; S. Bauer-Gogonea; S. Bauer; R. Gerhard-Multhaupt; F. Michelotti; E. Toussaere; R. Levenson; J. Liang; J. Zyss Dielectric, pyroelectric, and electro-optic monitoring of the cross-linking process and photoinduced poling of Red Acid Magly, Appl. Phys. Lett., Volume 70 (1997), pp. 568-570

[10] S. Brasselet; J. Zyss Control of the polarization dependence of optically poled nonlinear polymer films, Opt. Lett., Volume 22 (1997) no. 19, pp. 1464-1466

[11] Z. Sekkat; M. Dumont Photoassisted poling azo dye doped polymeric films at room temperature, Appl. Phys. B, Volume 54 (1992) no. 5, pp. 486-489

[12] M. Dumont A general model for optically induced molecular order in amorphousmaterials, via photoisomerisation, Nonlinear Opt., Volume 9 (1995), pp. 327-338

[13] R. Levenson; J. Zyss Polymer based optoelectronics: from molecular nonlinear optics to device technology (M. Quillec, ed.), Materials for Optoelectronics, Kluwer, Boston, 1996

[14] R. Levenson; J. Liang; E. Toussaere; N. Bouadma; A. Carenco; J. Zyss; G. Froyer; M. Guilbert; Y. Pelous; D. Bosc Polymeric waveguides for electrooptic applications: material, characterization and device demonstration, Nonlinear Opt., Volume 4 (1993), pp. 233-243

[15] J. Liang; R. Levenson; C. Rossier; E. Toussaere; J. Zyss; A. Rousseau; B. Boutevin; F. Foll; D. Bosc Thermally stable cross-linked polymers for electro-optic applications, J. Phys. III, Volume 4 (1994) no. 12, pp. 2441-2450

[16] L. Bes; A. Rousseau; B. Boutevin; R. Mercier; B. Sillion; E. Toussaere Synthesis and characterization of aromatic polyimides bearing nonlinear optical chromophores, High Perform. Polym., Volume 12 (2000), pp. 169-176

[17] D. Chen; H.R. Fetterman; A. Chen; W.H. Steier; L.R. Dalton; W. Wang; Y. Shi Demonstration of 110 GHz electro-optic polymer modulators, Appl. Phys. Lett., Volume 70 (1997) no. 25, pp. 3335-3337

[18] Y. Shi; W. Lin; D.J. Olson; J.H. Bechtel; H. Zhang; W.H. Steier; C. Zhang; L.R. Dalton Electro-optic polymer modulators with 0.8 V half-wave voltage, Appl. Phys. Lett., Volume 77 (2000) no. 1, pp. 1-3

[19] A. Donval; E. Toussaere; R. Hierle; J. Zyss New polarization insensitive electrooptic polymer amplitude modulator designed for integrated optic, J. Appl. Phys., Volume 87 (2000) no. 7, pp. 3258-3262

[20] A. Donval; E. Toussaere; S. Brasselet; J. Zyss Comparative assessment of electrical, photoassisted and all optical in-plane poling of polymer based electrooptic modulators, Opt. Mater. (Amsterdam), Volume 12 (1999) no. 2–3, pp. 215-219

[21] Y. Silberberg; P. Perlmutter; J.E. Baran Digital optical switch, Appl. Phys. Lett., Volume 16 (1987) no. 19, pp. 1230-1232

[22] H. Feng; X. Li; Z. Yang; M. Wang 2×2 GaAs asymetyric Mach–Zehnder interferometer switch, Appl. Phys. Lett., Volume 60 (1992) no. 23, pp. 2843-2845

[23] M.-C. Oh; H.-J. Lee; M.-H. Lee; J.-H. Ahn; S. Han Asymetric X-junction thermooptic switches based on fluorinated polymer waveguides, IEEE Photon. Technol. Lett., Volume 10 (1998) no. 6, pp. 813-815

[24] A. Chen; V. Chuyanov; S. Garner; H. Zhang; W.H. Steier Low Vπ electro-optic modulator with a high μβ chromophore and a constant-bias field, Opt. Lett., Volume 23 (1998) no. 6, pp. 478-480

[25] W.-Y. Hwang; M.-C. Oh; H.-M. Lee; H. Park; J.-J. Kim Polymeric 2×2 electro-optic switch consisting of asymetric Y junctions and Mach–Zenhder interferometer, IEEE Photon. Technol. Lett., Volume 9 (1997) no. 6, pp. 761-763

[26] D. An; Z. Shi; L. Sun; J. Taboada; Q. Zhou; X. Lu; R. Chen; S. Tang; H. Zhang; W. Steier; A. Ren; L. Dalton Polymeric electro-optic modulator based on 1×2 Y-fed directional coupler, Appl. Phys. Lett., Volume 76 (2000) no. 15, pp. 1972-1974

[27] D. Smith; J. Baran; J. Jackel; R. Wagner; R. Welter A mode-evolution-type integrated-optical beam combiner for coherent receivers, IEEE Photon. Technol. Lett., Volume 3 (1991) no. 4, pp. 339-341

[28] A.V. Ochs; A. Rousseau; B. Boutevin; E. Toussaere; A. Donval; R. Hierle; J. Zyss Fabrication of low refractive index low loss fluorinated self-cross linking polymer waveguides for optical devices, Proc. 7th International Plastic Optical Fibres Conference, Berlin, 1998, pp. 316-323

[29] L. Xu; X.-C. Zhang; D.H. Auston Terahertz beam generation by femtosecond optical pulses in electro-optic materials, Appl. Phys. Lett., Volume 61 (1992) no. 15, pp. 1784-1786

[30] X.-C. Zhang; X. Ma; Y. Jin; T.-M. Lu; E. Boden; P. Phelps; K. Stewart; C. Yakymyshyn Terahertz optical rectification from a nonlinear organic crystal, Appl. Phys. Lett., Volume 61 (1992) no. 26, pp. 3080-3082

[31] E. Frlan; S. Janz; F. Chatenoud; R. Normandin; M.G. Stubs; J.S. Wight Generation of tunable, CW, microwave radiation in X-band by difference–frequency mixing, Electron. Lett., Volume 30 (1994) no. 7, pp. 595-597

[32] J.-F. Larchanché, PhD thesis, USTL, 2001

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Multipolar engineering of molecules and materials for quadratic nonlinear optics

Isabelle Ledoux; Joseph Zyss

C. R. Phys (2002)


Challenges and advances of photonic integrated circuits

Hélène Debrégeas-Sillard; Christophe Kazmierski

C. R. Phys (2008)


DNA – novel nanomaterial for applications in photonics and in electronics

Ileana Rau; James G. Grote; Francois Kajzar; ...

C. R. Phys (2012)