[La corrosion des matériaux de conteneurs pour déchets HAVL – crédibilité scientifique de la prévision à long terme]
La résistance à la corrosion des matériaux de conteneur en situation de stockage est généralement prédite à partir de résultats d'expériences de durée limitée, courte à l'échelle des temps d'un stockage. La situation est illustrée pour deux classes de matériaux aux comportements bien typés et assez différents : les aciers non ou faiblement alliés, qui subiront une corrosion généralisée, et les matériaux passivables (aciers inoxydables ou alliages Ni–Cr–Mo), qui sont susceptibles de subir une corrosion par piqûres ou une corrosion caverneuse. Pour améliorer la crédibilité scientifique de la prévision à long terme et accroı̂tre la robustesse de la démonstration, il est nécessaire d'approfondir notre compréhension des mécanismes de la corrosion du conteneur couplée avec son champ proche. La tâche est vraisemblablement plus difficile pour les matériaux passivables que pour les matériaux dits consommables.
Traditionally, the corrosion behaviour of container materials can be predicted by extrapolation from relatively short-term experiments. Approaches to life prediction are described for two kinds of materials: carbon steel (corrosion allowance material) which must resist general corrosion, and passive materials (corrosion-resistant materials) which may suffer localized corrosion phenomena (pitting and crevice corrosion). The current theoretical and empirical basis for extrapolating the behavior of these materials to long periods emphasizes the significant gaps in understanding. To improve the credibility of life prediction, and to prove the robustness of geological disposal systems, predictive models based on mechanistic understanding are needed. This work is probably more difficult for the corrosion-resistant materials than for corrosion-allowance materials.
Accepté le :
Publié le :
Mot clés : conteneur, acier au carbone, matériaux passivables, corrosion généralisée, corrosion par piqûres, corrosion en crevasse
Jean-Marie Gras 1
@article{CRPHYS_2002__3_7-8_891_0, author = {Jean-Marie Gras}, title = {Life prediction for {HLW} containers {\textendash} issues related to long-term extrapolation of corrosion resistance}, journal = {Comptes Rendus. Physique}, pages = {891--902}, publisher = {Elsevier}, volume = {3}, number = {7-8}, year = {2002}, doi = {10.1016/S1631-0705(02)01358-0}, language = {en}, }
TY - JOUR AU - Jean-Marie Gras TI - Life prediction for HLW containers – issues related to long-term extrapolation of corrosion resistance JO - Comptes Rendus. Physique PY - 2002 SP - 891 EP - 902 VL - 3 IS - 7-8 PB - Elsevier DO - 10.1016/S1631-0705(02)01358-0 LA - en ID - CRPHYS_2002__3_7-8_891_0 ER -
Jean-Marie Gras. Life prediction for HLW containers – issues related to long-term extrapolation of corrosion resistance. Comptes Rendus. Physique, Volume 3 (2002) no. 7-8, pp. 891-902. doi : 10.1016/S1631-0705(02)01358-0. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01358-0/
[1] An assessment of carbon steel containers for radioactive waste disposal, Corrosion Sci., Volume 28 (1988), pp. 289-320
[2] G.P. Marsh, K.J. Taylor, S.M. Sharland, A.J. Diver, Corrosion of carbon steel for the geological disposal of radioactive waste, Report CEC EUR-13671, 1991
[3] H. Ishikawa, A. Honda, N. Sasaki, Long life prediction of carbon steel overpack for geological isolation of high-level radioactive waste, in: Life Prediction of Corrodible Structures, Nace, Hawaii, 5–8 November 1991
[4] Steel as a container material for nuclear waste disposal, Corrosion Problems Related to Nuclear Waste Disposal, EFC Publication, 7, The Institute of Materials, 1992, pp. 43-56
[5] A modelling study for long-term life prediction of carbon steel overpack for geological isolation of high-level radioactive waste, Proceedings of International Symposium on Plant Aging and Life Prediction of Corrodible Structures, 1995, pp. 217-227
[6] J.M. Gras, Corrosion behaviour of metallic container materials for geological disposal of high-level waste. A review and assessment, in: Eurocorr'96, Nice, 24–26 September 1996
[7] J.M. Gras, F. Foct, Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal, in: International Workshop Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, Cadarache, 26–29 November 2001
[8] Copper canisters for nuclear high-level waste disposal: corrosion aspects, Corrosion Problems Related to Nuclear Waste Disposal, EFC Publication, 7, The Institute of Materials, 1992, pp. 32-42
[9] L. Werme, P. Sellin, The performance of a copper canister for geologic disposal of spent nuclear fuel in granitic rock, in: International Workshop Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, Cadarache, 26–29 November 2001
[10] Localized corrosion of a candidate container material for high-level nuclear waste disposal, Corrosion, Volume 47 (1991), pp. 464-472
[11] A model for container performance in an unsaturated repository, Nucl. Technol., Volume 113 (1996), pp. 29-45
[12] Corrosion processes affecting the performance of Alloy 22 as a high-level radioactive waste container material, Mater. Res. Soc. Symp. Proc., 663, 2001
[13] P. Combrade, Crevice corrosion of passive materials in long term geological nuclear waste disposal, in: International Workshop Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, Cadarache, 26–29 November 2001
[14] D.W. Shoesmith, B.M. Ikeda, F. King, Modelling procedures for predicting the lifetimes of nuclear waste containers, in: Proceedings of NATO Advanced Workshop on Modelling Aqueous Corrosion Processes, Plymouth, UK, 6–9 September 1993
[15] The development of an experimental data base for the lifetime predictions of titanium nuclear waste containers, ASTM STP, 1194, 1994, pp. 126-142
[16] Japan Nuclear Cycle Development Institute (JNC), H12: Project to establish the scientific and technical basis for HLW disposal in Japan, Report 2, April 2000, pp. IV-19–IV-26
[17] C. Bataillon, Application of the Point Defect Model to modeling the corrosion of iron based canisters in geological repository, in: International Workshop Prediction of Long Term Corrosion Behaviour in Nuclear Waste Systems, Cadarache, 26–29 November 2001
[18] US Nuclear Waste Technical Review Board, Details of the Board's evaluation of the Department of Energy's Technical and Scientific Work, January 24, 2002
[19] Applicability of repassivation potential for long-term prediction of localized corrosion of Alloy 825 and type 316L stainless steel, Corrosion, Volume 49 (1993), pp. 885-894
[20] Long-term prediction of localized corrosion of Alloy 825 in high-level nuclear waste repository environments, Corrosion, Volume 52 (1996), pp. 115-124
[21] Methodologies for predicting the performance of Ni–Cr–Mo alloys proposed for high level nuclear waste containers, Mater. Res. Soc. Symp. Proc., 556, 1999, pp. 879-886
[22] 4th International Conference High Level Radioactive Waste Management, Las Vegas, USA (1993), pp. 1761-1769
[23] P. Combrade, C. Duret, C. Bosch, Corrosion localisée des alliages passivables pour conteneurs de stockage de déchets radioactifs, in: Bilan des Études et Travaux, 2001, Andra, to be published
[24] J.M. Gras, Résistance à la corrosion des matériaux de conteneur envisagés pour le stockage profond des déchets nucléaires. 2ème partie : Aciers inoxydables et alliages Ni–Cr–Mo, Rapport EDF R&D, HT-40/98-015, décembre 1998
[1] Effect of Grande Ronde basalt groundwater composition on the corrosion of low-carbon steel in the presence of basalt-bentonite packing, Mater. Res. Soc. Symp. Proc., Volume 44 (1985), pp. 273-278
[2] Methodologies for predicting the performance of Ni–Cr–Mo alloys proposed for high level nuclear waste containers, Mater. Res. Soc. Symp. Proc., Volume 556 (1999), pp. 879-886
Cité par Sources :
Commentaires - Politique