[Origine physique du contraste entre activité électrique au dessus des terres et des océans]
New tests and older ideas are explored to understand the origin of the pronounced contrast in lightning between land and sea. The behavior of islands as miniature continents with variable area supports the traditional thermal hypothesis over the aerosol hypothesis for lightning control. The substantial land–ocean contrast in updraft strength is supported globally by TRMM (Tropical Rainfall Measuring Mission) radar comparisons of mixed phase radar reflectivity. The land–ocean updraft contrast is grossly inconsistent with the land–ocean contrast in CAPE (Convective Available Potential Energy), from the standpoint of parcel theory. This inconsistency is resolved by the scaling of buoyant parcel size with cloud base height, as suggested by earlier investigators. Strongly electrified continental convection is then favored by a larger surface Bowen ratio, and by larger, more strongly buoyant boundary layer parcels which more efficiently transform CAPE to kinetic energy of the updraft in the moist stage of conditional instability.
L'origine du contraste prononcé entre activité électrique au dessus des terres et des océans est explorée à l'aide de concepts classiques et de nouvelles méthodes d'analyse. Le comportement des ı̂les, considérées comme similaires à des continents miniatures, est en faveur d'un contrôle de l'activité électrique par un mécanisme thermodynamique plutôt que par la présence d'aérosols. L'activité électrique au-dessus des ı̂les, considérées comme similaires à des continents miniatures, est pilotée par un mécanisme thermodynamique plutôt que par la présence d'aérosols. Les mesures de réflectivité radar dans le cadre de la mission TRMM (Tropical Rainfall Measuring Mission) soulignent le contraste important entre l'intensité des ascendances mesurées au dessus des terres et des océans. Cependant, ce contraste en termes d'ascendance ne peut pas être attribué à une différence d'instabilité convective potentielle (CAPE) déterminée en référence à la flottabilité des masses d'air. Ce problème est résolu en dimensionnant celles-ci selon l'altitude de la base du nuage, comme cela avait été suggéré lors d'études précédentes. Une convection continentale associée à une forte activité électrique est donc favorisée par un rapport de Bowen surfacique plus important et par une plus grande instabilité convective en couche limite. Ceci conduit à une transformation plus efficace de l'instabilité convective potentielle en énergie cinétique des courants ascendants nuageux.
Mots-clés : aérosols, convection, foudre, thermique, orages, ascendances
Earle Williams 1 ; Sharon Stanfill 2
@article{CRPHYS_2002__3_10_1277_0, author = {Earle Williams and Sharon Stanfill}, title = {The physical origin of the land{\textendash}ocean contrast in lightning activity}, journal = {Comptes Rendus. Physique}, pages = {1277--1292}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01407-X}, language = {en}, }
Earle Williams; Sharon Stanfill. The physical origin of the land–ocean contrast in lightning activity. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1277-1292. doi : 10.1016/S1631-0705(02)01407-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01407-X/
[1] The distribution of thunderstorms over the globe, Geophys. Mem. London, Volume 24 (1925), pp. 147-164
[2] On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe, Quart. J. Roy. Met. Soc, Volume 55 (1929), pp. 1-17
[3] Some topics in atmospheric electricity (L.G. Smith, ed.), Recent Advances in Atmospheric Electricity, Pergamon Press, 1958, pp. 5-16
[4] The global distribution of midnight lightning: December 1977 to August 1978, Mon. Wea. Rev, Volume 114 (1986), pp. 2640-2653
[5] et al. The lightning imaging sensor, Proceedings 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, NASA/CP-1999-209261, 1999, pp. 746-749
[6] The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the earth, J. Geophys. Res, Volume 98 (1993), pp. 5221-5234
[7] An analysis of the conditional instability of the tropical atmosphere, 121 (1993), pp. 21-36
[8] The Schumann resonance: a global tropical thermometer, Science, Volume 256 (1992), pp. 1184-1187
[9] Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev, Volume 122 (1994), pp. 1917-1929
[10] Global circuit response to temperature on distinct time scales: A status report (M. Hayakawa, ed.), Atmospheric and Ionospheric Phenomena Associated with Earthquakes, Terra Scientific, Tokyo, 1999
[11] Global surface temperatures and the atmospheric electric circuit, Geophys. Res. Lett, Volume 20 (1993), p. 1363
[12] Global lightning and climate variability inferred from ELF field variations, Geophys. Res. Lett, Volume 24 (1998), pp. 2411-2414
[13] Lightning activity as an indicator of climate change, Quart. J. Roy. Met. Soc, Volume 125 (1999), pp. 893-903
[14] Ionospheric potential as a proxy index for global temperature, Atmos. Res, Volume 51 (1999), pp. 309-314
[15] A. Gettelman, D.J. Seidel, M.C. Wheeler, R.J. Ross, Multi-decadal trends in tropical convective available potential energy, J. Geophys. Res., 2002, in press
[16] Reply to Michaud, L.M., Comment on “Convective available potential energy in the environment of oceanic and continental clouds”, J. Atmos. Sci, Volume 53 (1996), pp. 1212-1214
[17] Environmental characteristics of convective systems during TRMM-LBA, Mon. Wea. Rev, Volume 130 (2002), pp. 1493-1509
[18] Aerosol effect on cloud droplet size monitored by satellite, Science, Volume 295 (2002), pp. 834-838
[19] E.R. Williams, et al., Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., 2002, in press
[20] Enhancement of cloud-to-ground lightning over Houston, Texas, Geophys. Res. Lett, Volume 28 (2001), pp. 2597-2600
[21] Clouds and Storms: The Behavior and Effect of Water in the Atmosphere, Pennsylvania State University Press, 1980
[22] Storm and Cloud Dynamics, Academic Press, 1989
[23] H.R. Byers, R.R. Braham, The thunderstorm project, U.S. Weather Bureau, U.S. Dept. of Commerce, Washington, DC, 1949
[24] Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux, J. Atmos. Sci, Volume 37 (1980), pp. 2444-2457
[25] WMO, World distribution of thunderstorm days, WMO/OMM, No. 21.TP. 21, Parts I and II, 1956
[26] The electrification of severe storms (C.A. Doswell, ed.), Severe Convective Storms, American Meteorological Society, 2001, pp. 527-561
[27] A radar and electrical study of tropical ‘hot towers’, J. Atmos. Sci, Volume 49 (1992), pp. 1386-1395
[28] A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quart. J. Roy. Met. Soc, Volume 121 (1995), pp. 1525-1548
[29] Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies, Atmos. Res, Volume 51 (1999), pp. 221-236
[30] Meteorological variation of maritime aerosols (A.F. Roddy; P.C. O'Connor, eds.), Atmospheric Aerosols and Nuclei, Galway University Press, Galway, Ireland, 1977, pp. 503-507
[31] Vertical velocity characteristics of oceanic convection, J. Atmos. Sci, Volume 46 (1989), pp. 621-640
[32] Vertical velocity in oceanic convection off tropical Australia, J. Atmos. Sci, Volume 51 (1994), pp. 3183-3193
[33] Severe local storms in the tropics (C.A. Doswell, ed.), Severe Convective Storms, Meteorological Monographs, American Meteorological Society, 2001, pp. 359-432
[34] E.J. Zipser, Some views on ‘hot towers’ after 50 years of tropical field programs and two years of TRMM data, in: Meteorological Monographs, American Meteorological Society, 2002, in press
[35] Cumulus cloud properties derived using Landsat satellite data, J. Clim. Appl. Met, Volume 25 (1986), pp. 261-276
[36] The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results, Bull. Am. Met. Soc, Volume 73 (1992), pp. 3-16
[37] Soaring over the open sea, Scientific Monthly, Volume 55 (1942), pp. 1-7
[38] Global Ocean Surface Temperature Atlas, UK Met. Office and Massachusetts Institute of Technology, 1990
[39] The parameterization of deep convection (R.K. Smith, ed.), The Physics and Parameterization of Moist Atmospheric Convection, NATO ASI Series C, 505, Kluwer Academic, Dordrecht, 1997, pp. 255-279
[40] Turbulent gravitational convection for maintained and instantaneous sources, Proc. Roy. Soc. London A, Volume 234 (1956), pp. 1-23
[41] The composite shape and structure of coherent eddies in the convective boundary layer, Boundary-Layer Meteor, Volume 61 (1992), pp. 213-245
[42] Mixing in thermals with and without buoyancy reversal, J. Atmos. Sci, Volume 49 (1992), pp. 1412-1426
[43] Fitting measurements of thunderstorm updraft profiles to model profiles, Mon. Wea. Rev, Volume 104 (1976), pp. 611-617
[44] Severe Convective Storms, Meteorological Monographs, 28, American Meteorological Society, November 2001
[45] On the heat balance in the equatorial trough zone, Geophysica, Volume 6 (1958), pp. 503-538
[46] Atlas of the Surface Heat Balance of the Continents, Gebrider Bortraeger, Berlin, 1989
[47] The Evolution of the Biosphere, Reidel, 1986
[48] The impact of simulated storm structure and intensity on variations in the mixed layer and moist layer depths, Mon. Wea. Rev, Volume 130 (2002), pp. 1722-1748
[49] Radar, passive microwave and lightning characteristics of precipitating systems in the tropics, Mon. Wea. Rev, Volume 130 (2002), pp. 802-824
[50] Conditional instability and lightning activity in Gabarone, Botswana, Meteorol. Atmos. Phys, Volume 62 (1993), pp. 169-175
[51] Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms, J. Appl. Met, Volume 39 (2000), pp. 2223-2230
[52] Structure and characteristics of precipitation systems observed by TRMM, Preprints, 11th Conf. On Satellite Meteorology and Oceanography, 15–18 October, Madison, WI, American Meteorological Society, Boston (2001), pp. 464-467
- Temporal and Spatial Variations in Lightning Activity and Meteorological Parameters Across the Indian Himalayan Region and Indo-Gangetic Plains, Asia-Pacific Journal of Atmospheric Sciences, Volume 61 (2025) no. 2 | DOI:10.1007/s13143-025-00391-x
- Evaluating thunderstorm characteristics and air quality during the COVID-19 lockdown in Northeastern and Eastern India, Atmospheric Research, Volume 320 (2025), p. 108053 | DOI:10.1016/j.atmosres.2025.108053
- The influence of aerosols on lightning activity in the Pearl River Delta of China, Atmospheric Research, Volume 321 (2025), p. 108066 | DOI:10.1016/j.atmosres.2025.108066
- Cloud-top brightness temperature inconsistent indicator of extreme surface rainfall in western and central equatorial Africa, Climate Dynamics, Volume 63 (2025) no. 5 | DOI:10.1007/s00382-025-07681-0
- A regional study on convective lightning activity and its interaction with sea surface temperature and thermodynamic indices, Discover Atmosphere, Volume 3 (2025) no. 1 | DOI:10.1007/s44292-025-00032-y
- Impact of the COVID-19 lockdown on zonal variability of lightning activity over the Indo-Gangetic Plains, Environmental Science and Pollution Research, Volume 32 (2025) no. 23, p. 14049 | DOI:10.1007/s11356-025-36498-x
- Thermodynamic control of lightning activity in premonsoon and monsoon season over the Indian region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 268 (2025), p. 106410 | DOI:10.1016/j.jastp.2024.106410
- Thunderstorm Structure and Lightning Properties in South China and over the South China Sea: A Comparative Study, Journal of Meteorological Research, Volume 39 (2025) no. 2, p. 415 | DOI:10.1007/s13351-025-4091-8
- Severe Storms in Changing Climate Scenario with a Distinctive Emphasis on South Asia and India, Severe Storms (2025), p. 563 | DOI:10.1007/978-981-97-7075-5_22
- , 3RD CONFERENCE ON INNOVATION IN TECHNOLOGY AND ENGINEERING SCIENCE 2022 (CITES2022): Innovation in Technology and Science for New Era of Engineering Professionalism, Volume 2891 (2024), p. 040001 | DOI:10.1063/5.0200950
- Impact Assessments of Aerosol Optical Depth and Lightning on Thunderstorm Over the Region of Uttarakhand, India, Aerosol Optical Depth and Precipitation (2024), p. 19 | DOI:10.1007/978-3-031-55836-8_2
- A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon, Atmospheric Chemistry and Physics, Volume 24 (2024) no. 18, p. 10793 | DOI:10.5194/acp-24-10793-2024
- Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements, Atmospheric Chemistry and Physics, Volume 24 (2024) no. 4, p. 2491 | DOI:10.5194/acp-24-2491-2024
- Contrasting characteristics of continental and oceanic deep convective systems at different life stages from CloudSat observations, Atmospheric Research, Volume 298 (2024), p. 107157 | DOI:10.1016/j.atmosres.2023.107157
- Toward untangling thunderstorm-aerosol relationships: An observational study of regions centered on Washington, DC and Kansas City, MO, Atmospheric Research, Volume 304 (2024), p. 107402 | DOI:10.1016/j.atmosres.2024.107402
- Analysis of the lightning activity during 18 years in the Congo Basin, Atmospheric Research, Volume 309 (2024), p. 107577 | DOI:10.1016/j.atmosres.2024.107577
- Lightning response to temperature and aerosols, Environmental Research Letters, Volume 19 (2024) no. 8, p. 083003 | DOI:10.1088/1748-9326/ad63bf
- A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates, Geoscientific Model Development, Volume 17 (2024) no. 18, p. 7141 | DOI:10.5194/gmd-17-7141-2024
- Trends of lightning flash density over India during different seasons, International Journal of Climatology, Volume 44 (2024) no. 5, p. 1587 | DOI:10.1002/joc.8400
- An explainable machine learning technique to forecast lightning density over North-Eastern India, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 259 (2024), p. 106255 | DOI:10.1016/j.jastp.2024.106255
- The impact of rainfall on the sea surface salinity: a mesocosm study, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-56915-4
- A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone, Surveys in Geophysics, Volume 45 (2024) no. 6, p. 1933 | DOI:10.1007/s10712-024-09868-2
- Large-Scale Aspects of Tropical Weather Extremes, An Introduction to Large-Scale Tropical Meteorology (2023), p. 221 | DOI:10.1007/978-3-031-12887-5_9
- The microphysics of the warm-rain and ice crystal processes of precipitation in simulated continental convective storms, Communications Earth Environment, Volume 4 (2023) no. 1 | DOI:10.1038/s43247-023-00884-5
- The Multiplatform Precipitation Feature (MPF) Database: A Storm‐Centric Synthesis of Space‐ and Ground‐Based Precipitation and Lightning Data Sets for Convective Studies, Earth and Space Science, Volume 10 (2023) no. 11 | DOI:10.1029/2023ea003137
- Revisiting the Land‐Ocean Contrasts in Deep Convective Cloud Intensity Using Global Satellite Observations, Geophysical Research Letters, Volume 50 (2023) no. 5 | DOI:10.1029/2022gl102089
- Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022, Hydrology, Volume 10 (2023) no. 7, p. 142 | DOI:10.3390/hydrology10070142
- A machine learning approach for prediction of seasonal lightning density in different lightning regions of India, International Journal of Climatology, Volume 43 (2023) no. 6, p. 2862 | DOI:10.1002/joc.8005
- Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC4RS Case Study, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 5 | DOI:10.1029/2022jd037107
- The Global Representativeness of Fair‐Weather Atmospheric Electricity Parameters From the Coastal Station Maitri, Antarctica, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 9 | DOI:10.1029/2022jd037696
- Thunderstorm and Lightning Activities over Western Pacific, Northern Indian Ocean and South China Sea Along with Their Adjacent Lands, Journal of Tropical Meteorology, Volume 29 (2023) no. 3, p. 347 | DOI:10.3724/j.1006-8775.2023.026
- Electrical Characteristics of Thunderstorms Under Different Weather Conditions in the Kashmir Valley, India, Pure and Applied Geophysics, Volume 180 (2023) no. 3, p. 1185 | DOI:10.1007/s00024-022-03223-5
- Combining CloudSat/CALIPSO and MODIS measurements to reconstruct tropical convective cloud structure, Remote Sensing of Environment, Volume 287 (2023), p. 113478 | DOI:10.1016/j.rse.2023.113478
- Role of north Indian Ocean on the lightning flash rate of the Indian land region, Theoretical and Applied Climatology, Volume 153 (2023) no. 1-2, p. 73 | DOI:10.1007/s00704-023-04517-x
- Multiverse Predictions for Habitability: Origin of Life Scenarios, Universe, Volume 9 (2023) no. 1, p. 42 | DOI:10.3390/universe9010042
- Aerosol interactions with deep convective clouds, Aerosols and Climate (2022), p. 571 | DOI:10.1016/b978-0-12-819766-0.00001-8
- Can the Correlation between Radar and Cloud-to-Ground Daily Fields Help to Identify the Different Rainfall Regimes? The Case of Catalonia, Atmosphere, Volume 13 (2022) no. 5, p. 808 | DOI:10.3390/atmos13050808
- Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions, Atmosphere, Volume 14 (2022) no. 1, p. 29 | DOI:10.3390/atmos14010029
- Parameterization and global distribution of sprites based on the WWLLN data, Atmospheric Research, Volume 276 (2022), p. 106272 | DOI:10.1016/j.atmosres.2022.106272
- Opposing comparable large effects of fine aerosols and coarse sea spray on marine warm clouds, Communications Earth Environment, Volume 3 (2022) no. 1 | DOI:10.1038/s43247-022-00562-y
- Spatial Pattern and Land Surface Features Associated with Cloud-to-Ground Lightning in Bangladesh: An Exploratory Study, Earth Systems and Environment, Volume 6 (2022) no. 2, p. 437 | DOI:10.1007/s41748-022-00310-4
- Microphysical Structure of Thunderstorms and Their Lightning Activity During the mei‐yu and Post‐mei‐yu Periods Over Nanjing, Yangtze River Delta, Geophysical Research Letters, Volume 49 (2022) no. 23 | DOI:10.1029/2022gl100952
- Evaluating a simple proxy for climatic cloud‐to‐ground lightning in Sichuan Province with complex terrain, Southwest China, International Journal of Climatology, Volume 42 (2022) no. 7, p. 3909 | DOI:10.1002/joc.7451
- A Decentralized Approach for Modeling Organized Convection Based on Thermal Populations on Microgrids, Journal of Advances in Modeling Earth Systems, Volume 14 (2022) no. 10 | DOI:10.1029/2022ms003042
- Relationship Between Lightning, Precipitation, and Environmental Characteristics at Mid‐/High Latitudes From a GLM and GPM Perspective, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 13 | DOI:10.1029/2022jd036894
- Using Polarimetric Radar Observations to Characterize First Echoes of Thunderstorms and Nonthunderstorms: A Comparative Study, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 23 | DOI:10.1029/2022jd036671
- Relationships among lightning, rainfall, and meteorological parameters over oceanic and land regions of India, Meteorology and Atmospheric Physics, Volume 134 (2022) no. 1 | DOI:10.1007/s00703-021-00841-x
- Lightning over Tibetan Plateau and its relation with winds associated with CAPE, Meteorology and Atmospheric Physics, Volume 134 (2022) no. 6 | DOI:10.1007/s00703-022-00930-5
- Coarse sea spray inhibits lightning, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-31714-5
- Study of Pre-monsoon CAPE Development over Puducherry, India, Thalassas: An International Journal of Marine Sciences, Volume 38 (2022) no. 1, p. 459 | DOI:10.1007/s41208-022-00402-y
- Relationship between Lightning and Aerosol Optical Depth over the Uttarakhand Region in India: Thermodynamic Perspective, Urban Science, Volume 6 (2022) no. 4, p. 70 | DOI:10.3390/urbansci6040070
- The Statistical Relationship of Lightning Activity and Short-Duration Rainfall Events over Guangzhou, China, in 2017, Weather and Forecasting, Volume 37 (2022) no. 5, p. 601 | DOI:10.1175/waf-d-21-0161.1
- Lightning occurrences and intensity over the Indian region: long-term trends and future projections, Atmospheric Chemistry and Physics, Volume 21 (2021) no. 14, p. 11161 | DOI:10.5194/acp-21-11161-2021
- Thunderstorm and fair-weather quasi-static electric fields over land and ocean, Atmospheric Research, Volume 257 (2021), p. 105618 | DOI:10.1016/j.atmosres.2021.105618
- Effects of aerosols on lightning activity over the Arabian Peninsula, Atmospheric Research, Volume 261 (2021), p. 105723 | DOI:10.1016/j.atmosres.2021.105723
- Influence of the COVID-19 lockdown on lightning activity in the Po Valley, Atmospheric Research, Volume 263 (2021), p. 105808 | DOI:10.1016/j.atmosres.2021.105808
- Cloud ice fraction governs lightning rate at a global scale, Communications Earth Environment, Volume 2 (2021) no. 1 | DOI:10.1038/s43247-021-00233-4
- Lightning Enhancement in Moist Convection With Smoke‐Laden Air Advected From Australian Wildfires, Geophysical Research Letters, Volume 48 (2021) no. 11 | DOI:10.1029/2020gl092355
- How Does LCL Height Influence Deep Convective Updraft Width?, Geophysical Research Letters, Volume 48 (2021) no. 13 | DOI:10.1029/2021gl093316
- Spatio-Temporal Lightning Analysis Over North Sulawesi in 2019 - 2020, IOP Conference Series: Earth and Environmental Science, Volume 893 (2021) no. 1, p. 012009 | DOI:10.1088/1755-1315/893/1/012009
- Preliminary characteristics of measurements from Fengyun-4A Lightning Mapping Imager, International Journal of Remote Sensing, Volume 42 (2021) no. 13, p. 4922 | DOI:10.1080/01431161.2021.1906983
- Observations from the one year electric field Study-North Slope of Alaska (OYES-NSA) field campaign, and their implications for observing the distribution of global electrified cloud activity, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 214 (2021), p. 105528 | DOI:10.1016/j.jastp.2020.105528
- Comparative study of lightning climatology and the role of meteorological parameters over the Himalayan region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 219 (2021), p. 105527 | DOI:10.1016/j.jastp.2020.105527
- Relationship of lightning with different weather parameters during transition period of dry to wet season over Indian region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 220 (2021), p. 105673 | DOI:10.1016/j.jastp.2021.105673
- Examining Conditions Supporting the Development of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 16 | DOI:10.1029/2021jd034582
- CAPE Threshold for Lightning Over the Tropical Ocean, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 20 | DOI:10.1029/2021jd035621
- Evolution of Global Lightning in the Transition From Cold to Warm Phase Preceding Two Super El Niño Events, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 3 | DOI:10.1029/2020jd033526
- Evaluating Empirical Lightning Parameterizations in Global Atmospheric Models, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 4 | DOI:10.1029/2020jd033695
- Observational Quantification of Aerosol Invigoration for Deep Convective Cloud Lifecycle Properties Based on Geostationary Satellite, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 9 | DOI:10.1029/2020jd034275
- Role of Lightning NOx in Ozone Formation: A Review, Pure and Applied Geophysics, Volume 178 (2021) no. 4, p. 1425 | DOI:10.1007/s00024-021-02710-5
- Lightning Activity Variability with Prevailing Weather Parameters and Aerosol Loading Over Dry and Wet Regions of India, Pure and Applied Geophysics, Volume 178 (2021) no. 4, p. 1445 | DOI:10.1007/s00024-021-02695-1
- Revisiting Lightning Activity and Parameterization Using Geostationary Satellite Observations, Remote Sensing, Volume 13 (2021) no. 19, p. 3866 | DOI:10.3390/rs13193866
- Aerosol invigoration of atmospheric convection through increases in humidity, Science, Volume 371 (2021) no. 6524, p. 83 | DOI:10.1126/science.abc5181
- Analysis of 11-years dynamics in spatial distribution of lightning density in North Asia, Вестник КРАУНЦ. Физико-математические науки (2021) no. 1, p. 159 | DOI:10.26117/2079-6641-2021-34-1-159-173
- Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China, Atmospheric Chemistry and Physics, Volume 20 (2020) no. 21, p. 13379 | DOI:10.5194/acp-20-13379-2020
- Lightning flash density in Europe based on 10 years of ATDnet data, Atmospheric Research, Volume 235 (2020), p. 104769 | DOI:10.1016/j.atmosres.2019.104769
- Geographical distribution of extreme deep and intense convective storms on Earth, Atmospheric Research, Volume 235 (2020), p. 104789 | DOI:10.1016/j.atmosres.2019.104789
- Potential use of the GLM for nowcasting and data assimilation, Atmospheric Research, Volume 242 (2020), p. 105019 | DOI:10.1016/j.atmosres.2020.105019
- Influence of aerosols on lightning activities in central eastern parts of China, Atmospheric Science Letters, Volume 21 (2020) no. 2 | DOI:10.1002/asl.957
- Aerosol Effects on Lightning Characteristics: A Comparison of Polluted and Clean Regimes, Geophysical Research Letters, Volume 47 (2020) no. 9 | DOI:10.1029/2019gl086825
- Assessment of the total lightning flash rate density (FRD) in northeast Brazil (NEB) based on TRMM orbital data from 1998 to 2013, International Journal of Applied Earth Observation and Geoinformation, Volume 93 (2020), p. 102195 | DOI:10.1016/j.jag.2020.102195
- Cold Pool Responses to Changes in Soil Moisture, Journal of Advances in Modeling Earth Systems, Volume 12 (2020) no. 8 | DOI:10.1029/2019ms001922
- A new thermodynamic index for thunderstorm detection based on cloud base height and equivalent potential temperature, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 207 (2020), p. 105367 | DOI:10.1016/j.jastp.2020.105367
- Subseasonal and Diurnal Variability in Lightning and Storm Activity over the Yangtze River Delta, China, during Mei-yu Season, Journal of Climate, Volume 33 (2020) no. 12, p. 5013 | DOI:10.1175/jcli-d-19-0453.1
- Thunderstorm Trends over Africa, Journal of Climate, Volume 33 (2020) no. 7, p. 2741 | DOI:10.1175/jcli-d-18-0781.1
- Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 13 | DOI:10.1029/2020jd032591
- Observations of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 17 | DOI:10.1029/2020jd033012
- Thunderstorm Climatologies and Their Relationships to Total and Extreme Precipitation in China, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 19 | DOI:10.1029/2020jd033152
- Toward a Realistic Representation of Global Electric Circuit Generators in Models of Atmospheric Dynamics, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 6 | DOI:10.1029/2019jd032130
- Polarimetric Radar Characteristics of Simulated and Observed Intense Convective Cores for a Midlatitude Continental and Tropical Maritime Environment, Journal of Hydrometeorology, Volume 21 (2020) no. 3, p. 501 | DOI:10.1175/jhm-d-19-0185.1
- Boundary Layer Quasi-Equilibrium Limits Convective Intensity Enhancement from the Diurnal Cycle in Surface Heating, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 1, p. 217 | DOI:10.1175/jas-d-18-0346.1
- Multiple Environmental Influences on the Lightning of Cold-Based Continental Cumulonimbus Clouds. Part I: Description and Validation of Model, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 12, p. 3999 | DOI:10.1175/jas-d-19-0200.1
- Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part II: Continental Conditions, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 4, p. 1313 | DOI:10.1175/jas-d-19-0301.1
- Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics, Remote Sensing, Volume 12 (2020) no. 16, p. 2622 | DOI:10.3390/rs12162622
- Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds, The Astrophysical Journal, Volume 893 (2020) no. 2, p. 163 | DOI:10.3847/1538-4357/ab822d
- , 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (2019), p. 1 | DOI:10.1109/fareastcon.2019.8934892
- A Numerical Study of Aerosol Effects on Electrification with Different Intensity Thunderclouds, Atmosphere, Volume 10 (2019) no. 9, p. 508 | DOI:10.3390/atmos10090508
- Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime, Atmospheric Chemistry and Physics, Volume 19 (2019) no. 16, p. 10717 | DOI:10.5194/acp-19-10717-2019
- The Impact of Cloud-To-Ground Lightning Type on the Differences in Return Stroke Peak Current Over Land and Ocean, IEEE Access, Volume 7 (2019), p. 174774 | DOI:10.1109/access.2019.2956685
- Tropical Oceanic Thunderstorms Near Kwajalein and the Roles of Evolution, Organization, and Forcing in Their Electrification, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 2, p. 544 | DOI:10.1029/2018jd029320
- The Dynamical Coupling of Convective Updrafts, Downdrafts, and Cold Pools in Simulated Supercell Thunderstorms, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 2, p. 664 | DOI:10.1029/2018jd029055
- Thunderstorm Efficiency Regimes in South America as Observed by STARNET and TRMM, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 21, p. 11428 | DOI:10.1029/2019jd030950
- A Bayesian‐Like Approach to Describe the Regional Variation of High‐Flash Rate Thunderstorms From Thermodynamic and Kinematic Environment Variables, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 23, p. 12507 | DOI:10.1029/2019jd031254
- Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part I: Maritime Conditions, Journal of the Atmospheric Sciences, Volume 76 (2019) no. 8, p. 2539 | DOI:10.1175/jas-d-18-0323.1
- Electricity in the Atmosphere—Elves, Reference Module in Earth Systems and Environmental Sciences (2019) | DOI:10.1016/b978-0-12-409548-9.11738-5
- High-Resolution Lightning Detection and Possible Relationship with Rainfall Events over the Central Mediterranean Area, Remote Sensing, Volume 11 (2019) no. 13, p. 1601 | DOI:10.3390/rs11131601
- Influence of Land Use and Land Cover Change on the Formation of Local Lightning, Remote Sensing, Volume 11 (2019) no. 4, p. 407 | DOI:10.3390/rs11040407
- Land-sea contrasts for climatic lightning activity over Indian region, Theoretical and Applied Climatology, Volume 138 (2019) no. 1-2, p. 931 | DOI:10.1007/s00704-019-02862-4
- The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?, Atmospheric Chemistry and Physics, Volume 18 (2018) no. 17, p. 12797 | DOI:10.5194/acp-18-12797-2018
- Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean, Atmospheric Chemistry and Physics, Volume 18 (2018) no. 4, p. 3065 | DOI:10.5194/acp-18-3065-2018
- Rain-shadow: An area harboring “Gray Ocean” clouds, Atmospheric Research, Volume 205 (2018), p. 70 | DOI:10.1016/j.atmosres.2018.02.005
- Characteristics of precipitating monsoon clouds over rain-shadow and drought-hit regions of India using radar, Climate Dynamics, Volume 50 (2018) no. 9-10, p. 3571 | DOI:10.1007/s00382-017-3826-3
- Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India, Climate Dynamics, Volume 50 (2018) no. 9-10, p. 3865 | DOI:10.1007/s00382-017-3851-2
- CAPE Times P Explains Lightning Over Land But Not the Land‐Ocean Contrast, Geophysical Research Letters, Volume 45 (2018) no. 22 | DOI:10.1029/2018gl080267
- Global Virga Precipitation Distribution Derived From Three Spaceborne Radars and Its Contribution to the False Radiometer Precipitation Detection, Geophysical Research Letters, Volume 45 (2018) no. 9, p. 4446 | DOI:10.1029/2018gl077891
- Lightning, rainfall, AOD, and convection variabilities in the monsoon zone of India, International Journal of Remote Sensing, Volume 39 (2018) no. 3, p. 727 | DOI:10.1080/01431161.2017.1392636
- Spatio-temporal variability of lightning activity over J K region and its relationship with topography, vegetation cover, and absorbing aerosol index (AAI), Journal of Atmospheric and Solar-Terrestrial Physics, Volume 179 (2018), p. 281 | DOI:10.1016/j.jastp.2018.08.011
- Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region, Journal of Climate, Volume 31 (2018) no. 18, p. 7363 | DOI:10.1175/jcli-d-18-0091.1
- Microphysical and Kinematic Processes Associated With Anomalous Charge Structures in Isolated Convection, Journal of Geophysical Research: Atmospheres, Volume 123 (2018) no. 12, p. 6505 | DOI:10.1029/2017jd027540
- Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015, Natural Hazards, Volume 92 (2018) no. 2, p. 857 | DOI:10.1007/s11069-018-3228-9
- Lightning Discharges, Cosmic Rays and Climate, Surveys in Geophysics, Volume 39 (2018) no. 5, p. 861 | DOI:10.1007/s10712-018-9469-z
- Abiotic O2 Levels on Planets around F, G, K, and M Stars: Effects of Lightning-produced Catalysts in Eliminating Oxygen False Positives, The Astrophysical Journal, Volume 866 (2018) no. 1, p. 56 | DOI:10.3847/1538-4357/aadd9b
- Diurnal Variation of TRMM/LIS Lightning Flash Radiances, Bulletin of the American Meteorological Society, Volume 98 (2017) no. 7, p. 1453 | DOI:10.1175/bams-d-16-0041.1
- Global association of aerosol with flash density of intense lightning, Environmental Research Letters, Volume 12 (2017) no. 11, p. 114037 | DOI:10.1088/1748-9326/aa922b
- Climate indicators for lightning over sea, sea–land mixed and land‐only surfaces in India, International Journal of Climatology, Volume 37 (2017) no. 4, p. 1672 | DOI:10.1002/joc.4802
- A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 14, p. 7461 | DOI:10.1002/2016jd026220
- Sensitivity of the summertime tropical Atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 5, p. 2579 | DOI:10.1002/2016jd026093
- The leading role of atomic oxygen in the collocation of elves and hydroxyl nightglow in the low‐latitude mesosphere, Journal of Geophysical Research: Space Physics, Volume 122 (2017) no. 5, p. 5550 | DOI:10.1002/2016ja023681
- The Consistent Behavior of Tropical Rain: Average Reflectivity Vertical Profiles Determined by Rain Top Height, Journal of Hydrometeorology, Volume 18 (2017) no. 3, p. 591 | DOI:10.1175/jhm-d-16-0078.1
- Interactions between the MJO, Aerosols, and Convection over the Central Indian Ocean, Journal of the Atmospheric Sciences, Volume 74 (2017) no. 2, p. 353 | DOI:10.1175/jas-d-16-0054.1
- Relationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale, Journal of the Atmospheric Sciences, Volume 74 (2017) no. 2, p. 531 | DOI:10.1175/jas-d-16-0049.1
- Ice-Phase Precipitation, Meteorological Monographs, Volume 58 (2017), p. 6.1 | DOI:10.1175/amsmonographs-d-16-0013.1
- Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India, Theoretical and Applied Climatology, Volume 128 (2017) no. 3-4, p. 835 | DOI:10.1007/s00704-016-1745-6
- Present State of Knowledge of Electrification and Lightning within Tropical Cyclones and Their Relationships to Microphysics and Storm Intensity, Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction (2016), p. 197 | DOI:10.5822/978-94-024-0896-6_7
- Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy, Advances in Atmospheric Sciences, Volume 33 (2016) no. 3, p. 365 | DOI:10.1007/s00376-015-5124-5
- Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment, Asia-Pacific Journal of Atmospheric Sciences, Volume 52 (2016) no. 3, p. 251 | DOI:10.1007/s13143-015-0087-0
- A thunderstorm cell-lightning activity analysis: The new concept of air mass catchment, Atmospheric Research, Volume 169 (2016), p. 340 | DOI:10.1016/j.atmosres.2015.10.017
- Lightning climatology in the Congo Basin, Atmospheric Research, Volume 178-179 (2016), p. 304 | DOI:10.1016/j.atmosres.2016.04.006
- Aerosols and lightning activity: The effect of vertical profile and aerosol type, Atmospheric Research, Volume 182 (2016), p. 243 | DOI:10.1016/j.atmosres.2016.07.031
- Where Are the Lightning Hotspots on Earth?, Bulletin of the American Meteorological Society, Volume 97 (2016) no. 11, p. 2051 | DOI:10.1175/bams-d-14-00193.1
- Cloud characteristics over the rain-shadow region of North Central peninsular India during monsoon withdrawal and post-withdrawal periods, Climate Dynamics, Volume 46 (2016) no. 1-2, p. 495 | DOI:10.1007/s00382-015-2595-0
- Climatological Comparison of Small- and Large-Current Cloud-to-Ground Lightning Flashes over Southern China, Journal of Climate, Volume 29 (2016) no. 8, p. 2831 | DOI:10.1175/jcli-d-15-0386.1
- Seeking reasons for the differences in size spectra of electrified storms over land and ocean, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 15, p. 9048 | DOI:10.1002/2016jd025150
- An analysis of five negative sprite‐parent discharges and their associated thunderstorm charge structures, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 2, p. 759 | DOI:10.1002/2015jd024188
- Why do oceanic negative cloud‐to‐ground lightning exhibit larger peak current values?, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 8, p. 4049 | DOI:10.1002/2015jd024129
- The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999–2009), Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 9, p. 4429 | DOI:10.1002/2016jd024782
- On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models, Journal of Hydrometeorology, Volume 17 (2016) no. 5, p. 1425 | DOI:10.1175/jhm-d-15-0111.1
- A Lightning Parameterization for the ECMWF Integrated Forecasting System, Monthly Weather Review, Volume 144 (2016) no. 9, p. 3057 | DOI:10.1175/mwr-d-16-0026.1
- Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 21, p. 5828 | DOI:10.1073/pnas.1514044113
- Automated identification of discrete, lightning‐generated, multiple‐dispersed whistler waves in C/NOFS‐VEFI very low frequency observations, Radio Science, Volume 51 (2016) no. 9, p. 1547 | DOI:10.1002/2016rs005989
- The effects of aerosol on development of thunderstorm electrification: A numerical study, Atmospheric Research, Volume 153 (2015), p. 376 | DOI:10.1016/j.atmosres.2014.09.011
- Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency, Atmospheric Research, Volume 164-165 (2015), p. 131 | DOI:10.1016/j.atmosres.2015.05.006
- A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region, Atmospheric Research, Volume 166 (2015), p. 213 | DOI:10.1016/j.atmosres.2015.07.008
- Linear relation between convective cloud base height and updrafts and application to satellite retrievals, Geophysical Research Letters, Volume 42 (2015) no. 15, p. 6485 | DOI:10.1002/2015gl064809
- Differences in size spectra of electrified storms over land and ocean, Geophysical Research Letters, Volume 42 (2015) no. 16, p. 6844 | DOI:10.1002/2015gl065264
- Higher surface Bowen ratios ineffective at increasing updraft intensity, Geophysical Research Letters, Volume 42 (2015) no. 23 | DOI:10.1002/2015gl066878
- A Global Assessment of the Spatial Distribution of Precipitation Occurrence, Journal of Applied Meteorology and Climatology, Volume 54 (2015) no. 11, p. 2179 | DOI:10.1175/jamc-d-15-0019.1
- Lightning and middle atmospheric discharges in the atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 134 (2015), p. 78 | DOI:10.1016/j.jastp.2015.10.001
- Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 12, p. 6207 | DOI:10.1002/2014jd023033
- Environmental controls on storm intensity and charge structure in multiple regions of the continental United States, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 13, p. 6575 | DOI:10.1002/2015jd023271
- Sensitivity of tropical tropospheric composition to lightning NOx production as determined by replay simulations with GEOS‐5, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 16, p. 8512 | DOI:10.1002/2014jd022987
- Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study, Journal of Meteorological Research, Volume 29 (2015) no. 6, p. 997 | DOI:10.1007/s13351-015-5023-9
- Evolution, Properties, and Spatial Variability of MJO Convection near and off the Equator during DYNAMO, Journal of the Atmospheric Sciences, Volume 72 (2015) no. 11, p. 4126 | DOI:10.1175/jas-d-15-0032.1
- Explicitly Simulated Electrification and Lightning within a Tropical Cyclone Based on the Environment of Hurricane Isaac (2012), Journal of the Atmospheric Sciences, Volume 72 (2015) no. 11, p. 4167 | DOI:10.1175/jas-d-14-0374.1
- Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions, Journal of the Atmospheric Sciences, Volume 72 (2015) no. 7, p. 2762 | DOI:10.1175/jas-d-15-0020.1
- Lightning activity and its association with rainfall and convective available potential energy over Maharashtra, India, Natural Hazards, Volume 77 (2015) no. 1, p. 293 | DOI:10.1007/s11069-015-1589-x
- Lightning characteristics over the eastern coast of the Mediterranean during different synoptic systems, Natural Hazards and Earth System Sciences, Volume 15 (2015) no. 11, p. 2449 | DOI:10.5194/nhess-15-2449-2015
- Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean, Advances in Atmospheric Sciences, Volume 31 (2014) no. 3, p. 581 | DOI:10.1007/s00376-013-3115-y
- The Chuva Project: How Does Convection Vary across Brazil?, Bulletin of the American Meteorological Society, Volume 95 (2014) no. 9, p. 1365 | DOI:10.1175/bams-d-13-00084.1
- On the spatial and temporal distribution of global thunderstorm cells, Environmental Research Letters, Volume 9 (2014) no. 12, p. 124023 | DOI:10.1088/1748-9326/9/12/124023
- Combining Satellite Infrared and Lightning Information to Estimate Warm‐Season Convective and Stratiform Rainfall, Journal of Applied Meteorology and Climatology, Volume 53 (2014) no. 1, p. 180 | DOI:10.1175/jamc-d-13-069.1
- Characteristics of Convective Processes and Vertical Vorticity from the Tropical Wave to Tropical Cyclone Stage in a High-Resolution Numerical Model Simulation of Tropical Cyclone Fay (2008), Journal of the Atmospheric Sciences, Volume 71 (2014) no. 3, p. 896 | DOI:10.1175/jas-d-13-0256.1
- Convective Characteristics of the Madden–Julian Oscillation over the Central Indian Ocean Observed by Shipborne Radar during DYNAMO, Journal of the Atmospheric Sciences, Volume 71 (2014) no. 8, p. 2859 | DOI:10.1175/jas-d-13-0372.1
- Understanding the Relationships between Lightning, Cloud Microphysics, and Airborne Radar-Derived Storm Structure during Hurricane Karl (2010), Monthly Weather Review, Volume 142 (2014) no. 2, p. 590 | DOI:10.1175/mwr-d-13-00008.1
- Global patterns of lightning properties derived by OTD and LIS, Natural Hazards and Earth System Sciences, Volume 14 (2014) no. 10, p. 2715 | DOI:10.5194/nhess-14-2715-2014
- CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate, Bulletin of the American Meteorological Society, Volume 94 (2013) no. 5, p. 685 | DOI:10.1175/bams-d-11-00239.1
- The reciprocal relation between lightning and pollution and their impact over Kolkata, India, Environmental Science and Pollution Research, Volume 20 (2013) no. 5, p. 3133 | DOI:10.1007/s11356-012-1219-z
- Radiated VLF energy differences of land and oceanic lightning, Geophysical Research Letters, Volume 40 (2013) no. 10, p. 2390 | DOI:10.1002/grl.50406
- Lightning activity over India: a study of east–west contrast, International Journal of Remote Sensing, Volume 34 (2013) no. 16, p. 5641 | DOI:10.1080/01431161.2013.794987
- Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships, Journal of Applied Meteorology and Climatology, Volume 52 (2013) no. 1, p. 213 | DOI:10.1175/jamc-d-12-040.1
- The lightning activity associated with the dry and moist convections in the Himalayan Regions, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 12, p. 6246 | DOI:10.1002/jgrd.50499
- Processes driving thunderstorms over the Agulhas Current, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 5, p. 2220 | DOI:10.1002/jgrd.50238
- Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model, Journal of the Atmospheric Sciences, Volume 70 (2013) no. 7, p. 2032 | DOI:10.1175/jas-d-12-0264.1
- Precipitation and Convective Characteristics of Summer Deep Convection over East Asia Observed by TRMM, Monthly Weather Review, Volume 141 (2013) no. 5, p. 1577 | DOI:10.1175/mwr-d-12-00177.1
- Climatology of thunderstorms in the Baltic countries, 1951–2000, Theoretical and Applied Climatology, Volume 111 (2013) no. 1-2, p. 309 | DOI:10.1007/s00704-012-0666-2
- High lightning activity in maritime clouds near Mexico, Atmospheric Chemistry and Physics, Volume 12 (2012) no. 17, p. 8055 | DOI:10.5194/acp-12-8055-2012
- The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds, Atmospheric Measurement Techniques, Volume 5 (2012) no. 8, p. 2039 | DOI:10.5194/amt-5-2039-2012
- Land–sea contrast in lightning activity over the sea and peninsular regions of South/Southeast Asia, Atmospheric Research, Volume 118 (2012), p. 52 | DOI:10.1016/j.atmosres.2012.05.027
- Variability of lightning activity in South/Southeast Asia during 1997–98 and 2002–03 El Nino/La Nina events, Atmospheric Research, Volume 118 (2012), p. 84 | DOI:10.1016/j.atmosres.2012.06.004
- Long recovery VLF perturbations associated with lightning discharges, Journal of Geophysical Research: Space Physics, Volume 117 (2012) no. A8 | DOI:10.1029/2012ja017567
- Tropical Oceanic Hot Towers: Need They Be Undilute to Transport Energy from the Boundary Layer to the Upper Troposphere Effectively? An Answer Based on Trajectory Analysis of a Simulation of a TOGA COARE Convective System, Journal of the Atmospheric Sciences, Volume 69 (2012) no. 1, p. 195 | DOI:10.1175/jas-d-11-0147.1
- The Role of Small Soluble Aerosols in the Microphysics of Deep Maritime Clouds, Journal of the Atmospheric Sciences, Volume 69 (2012) no. 9, p. 2787 | DOI:10.1175/2011jas3649.1
- A lightning climatology of the South-West Indian Ocean, Natural Hazards and Earth System Sciences, Volume 12 (2012) no. 8, p. 2659 | DOI:10.5194/nhess-12-2659-2012
- Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophysical Research Letters, Volume 38 (2011) no. 4, p. n/a | DOI:10.1029/2010gl046052
- Why do tornados and hailstorms rest on weekends?, Journal of Geophysical Research, Volume 116 (2011) no. D20 | DOI:10.1029/2011jd016214
- Rain on small tropical islands, Journal of Geophysical Research, Volume 116 (2011) no. D8 | DOI:10.1029/2010jd014695
- Search for possible relationship between volcanic ash particles and thunderstorm lightning activity, Journal of Physics: Conference Series, Volume 333 (2011), p. 012016 | DOI:10.1088/1742-6596/333/1/012016
- Exploring the Land–Ocean Contrast in Convective Vigor Using Islands, Journal of the Atmospheric Sciences, Volume 68 (2011) no. 3, p. 602 | DOI:10.1175/2010jas3558.1
- Solar Activity, Lightning and Climate, Surveys in Geophysics, Volume 32 (2011) no. 6, p. 659 | DOI:10.1007/s10712-011-9127-1
- Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan, Atmospheric Research, Volume 95 (2010) no. 2-3, p. 115 | DOI:10.1016/j.atmosres.2009.08.016
- Categorisation of synoptic environments associated with mesoscale convective systems over the UK, Atmospheric Research, Volume 97 (2010) no. 1-2, p. 194 | DOI:10.1016/j.atmosres.2010.04.001
- Lightning activity variations over three islands in a tropical monsoon region, Atmospheric Research, Volume 98 (2010) no. 2-4, p. 309 | DOI:10.1016/j.atmosres.2010.07.014
- Land‐ocean contrasts in lightning activity over the Indian region, International Journal of Climatology, Volume 30 (2010) no. 1, p. 137 | DOI:10.1002/joc.1970
- Correlations between deep convection and lightning activity on a global scale, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 72 (2010) no. 14-15, p. 1114 | DOI:10.1016/j.jastp.2010.07.019
- Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit, Journal of the Atmospheric Sciences, Volume 67 (2010) no. 2, p. 309 | DOI:10.1175/2009jas3248.1
- An Analysis of the Environments of Intense Convective Systems in West Africa in 2003, Monthly Weather Review, Volume 138 (2010) no. 10, p. 3721 | DOI:10.1175/2010mwr3321.1
- Pre- and Postupgrade Distributions of NLDN Reported Cloud-to-Ground Lightning Characteristics in the Contiguous United States, Monthly Weather Review, Volume 138 (2010) no. 9, p. 3623 | DOI:10.1175/2010mwr3283.1
- Analyses of summer lightning activity and precipitation in the Central and Eastern Mediterranean, Atmospheric Research, Volume 91 (2009) no. 2-4, p. 453 | DOI:10.1016/j.atmosres.2008.06.013
- Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons, Atmospheric Research, Volume 92 (2009) no. 4, p. 402 | DOI:10.1016/j.atmosres.2008.12.009
- A fifth‐power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations, Journal of Geophysical Research: Atmospheres, Volume 114 (2009) no. D9 | DOI:10.1029/2008jd010370
- On How Hot Towers Fuel the Hadley Cell: An Observational and Modeling Study of Line-Organized Convection in the Equatorial Trough from TOGA COARE, Journal of the Atmospheric Sciences, Volume 66 (2009) no. 9, p. 2730 | DOI:10.1175/2009jas3017.1
- Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Science Reviews, Volume 89 (2008) no. 1-2, p. 13 | DOI:10.1016/j.earscirev.2008.03.001
- The Identification and Verification of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations, Journal of Applied Meteorology and Climatology, Volume 47 (2008) no. 1, p. 164 | DOI:10.1175/2007jamc1471.1
- Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean, Journal of Geophysical Research: Atmospheres, Volume 113 (2008) no. D21 | DOI:10.1029/2008jd010605
- Spatial Distribution and Frequency of Thunderstorms and Lightning in Australia, Lightning: Principles, Instruments and Applications (2008), p. 187 | DOI:10.1007/978-1-4020-9079-0_8
- Schumann Resonance Signatures of Global Lightning Activity, Lightning: Principles, Instruments and Applications (2008), p. 347 | DOI:10.1007/978-1-4020-9079-0_16
- Lightning and Precipitation, Lightning: Principles, Instruments and Applications (2008), p. 447 | DOI:10.1007/978-1-4020-9079-0_20
- Thunderstorms, Lightning and Climate Change, Lightning: Principles, Instruments and Applications (2008), p. 521 | DOI:10.1007/978-1-4020-9079-0_24
- Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves, Surveys in Geophysics, Volume 29 (2008) no. 6, p. 499 | DOI:10.1007/s10712-008-9053-z
- The global lightning-induced nitrogen oxides source, Atmospheric Chemistry and Physics, Volume 7 (2007) no. 14, p. 3823 | DOI:10.5194/acp-7-3823-2007
- Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: A review, Atmospheric Research, Volume 84 (2007) no. 3, p. 189 | DOI:10.1016/j.atmosres.2006.11.007
- Will moist convection be stronger in a warmer climate?, Geophysical Research Letters, Volume 34 (2007) no. 16 | DOI:10.1029/2007gl030525
- Is Man Actively Changing the Environment, Measuring Precipitation From Space (2007), p. 7 | DOI:10.1007/978-1-4020-5835-6_2
- Environmental Control of Cloud-to-Ground Lightning Polarity in Severe Storms, Monthly Weather Review, Volume 135 (2007) no. 4, p. 1327 | DOI:10.1175/mwr3361.1
- Cosmic Rays and Climate, Surveys in Geophysics, Volume 28 (2007) no. 5-6, p. 333 | DOI:10.1007/s10712-008-9030-6
- Geographical and seasonal characteristics of the relationship between lightning ground flash density and rainfall within the continent of Australia, Atmospheric Research, Volume 79 (2006) no. 1, p. 1 | DOI:10.1016/j.atmosres.2005.03.004
- A comparative modeling study of the early electrical development of maritime and continental thunderstorms, Atmospheric Research, Volume 82 (2006) no. 1-2, p. 26 | DOI:10.1016/j.atmosres.2005.01.006
- Regional Responses of Lightning Activities to Relative Humidity of the Surface, Chinese Journal of Geophysics, Volume 49 (2006) no. 2, p. 311 | DOI:10.1002/cjg2.840
- Intraseasonal Forcing of Convection and Lightning Activity in the Southern Amazon as a Function of Cross-Equatorial Flow, Journal of Climate, Volume 19 (2006) no. 13, p. 3180 | DOI:10.1175/jcli3788.1
- Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia, Journal of Geophysical Research: Atmospheres, Volume 111 (2006) no. D19 | DOI:10.1029/2005jd006982
- Intense convective systems in West Africa and their relationship to the African easterly jet, Quarterly Journal of the Royal Meteorological Society, Volume 132 (2006) no. 614, p. 163 | DOI:10.1256/qj.05.55
- GLOBAL THUNDERSTORM ACTIVITY, Sprites, Elves and Intense Lightning Discharges, Volume 225 (2006), p. 85 | DOI:10.1007/1-4020-4629-4_4
- Latitudinal variations of cloud base height and lightning parameters in the tropics, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 222 | DOI:10.1016/j.atmosres.2004.11.010
- Lightning and climate: A review, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 272 | DOI:10.1016/j.atmosres.2004.11.014
- Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 288 | DOI:10.1016/j.atmosres.2004.11.009
- The Sensitivity of the Tropical-Mean Radiation Budget, Journal of Climate, Volume 18 (2005) no. 16, p. 3189 | DOI:10.1175/jcli3456.1
- The Sensitivity of Simulated Storm Structure, Intensity, and Precipitation Efficiency to Environmental Temperature, Monthly Weather Review, Volume 133 (2005) no. 10, p. 3015 | DOI:10.1175/mwr3015.1
- Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics, Monthly Weather Review, Volume 133 (2005) no. 3, p. 543 | DOI:10.1175/mwr-2876.1
- Spatial and Temporal Distribution of Lightning Activities on the Tibetan Plateau, Chinese Journal of Geophysics, Volume 47 (2004) no. 6, p. 1122 | DOI:10.1002/cjg2.596
- Underestimation of deep convective cloud tops by thermal imagery, Geophysical Research Letters, Volume 31 (2004) no. 11 | DOI:10.1029/2004gl019699
- Seasonal variation of lightning on the Tibetan Plateau: A Spring anomaly?, Geophysical Research Letters, Volume 31 (2004) no. 4 | DOI:10.1029/2003gl018930
- Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 66 (2004) no. 13-14, p. 1213 | DOI:10.1016/j.jastp.2004.05.015
- Islands as miniature continents: Another look at the land‐ocean lightning contrast, Journal of Geophysical Research: Atmospheres, Volume 109 (2004) no. D16 | DOI:10.1029/2003jd003833
- Evidence of thermal and aerosol effects on the cloud‐to‐ground lightning density and polarity over large urban areas of Southeastern Brazil, Geophysical Research Letters, Volume 30 (2003) no. 13 | DOI:10.1029/2003gl017496
- Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor, Journal of Geophysical Research: Atmospheres, Volume 108 (2003) no. D17 | DOI:10.1029/2002jd003304
Cité par 245 documents. Sources : Crossref
Commentaires - Politique