Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
The physical origin of the land–ocean contrast in lightning activity
[Origine physique du contraste entre activité électrique au dessus des terres et des océans]
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1277-1292.

New tests and older ideas are explored to understand the origin of the pronounced contrast in lightning between land and sea. The behavior of islands as miniature continents with variable area supports the traditional thermal hypothesis over the aerosol hypothesis for lightning control. The substantial land–ocean contrast in updraft strength is supported globally by TRMM (Tropical Rainfall Measuring Mission) radar comparisons of mixed phase radar reflectivity. The land–ocean updraft contrast is grossly inconsistent with the land–ocean contrast in CAPE (Convective Available Potential Energy), from the standpoint of parcel theory. This inconsistency is resolved by the scaling of buoyant parcel size with cloud base height, as suggested by earlier investigators. Strongly electrified continental convection is then favored by a larger surface Bowen ratio, and by larger, more strongly buoyant boundary layer parcels which more efficiently transform CAPE to kinetic energy of the updraft in the moist stage of conditional instability.

L'origine du contraste prononcé entre activité électrique au dessus des terres et des océans est explorée à l'aide de concepts classiques et de nouvelles méthodes d'analyse. Le comportement des ı̂les, considérées comme similaires à des continents miniatures, est en faveur d'un contrôle de l'activité électrique par un mécanisme thermodynamique plutôt que par la présence d'aérosols. L'activité électrique au-dessus des ı̂les, considérées comme similaires à des continents miniatures, est pilotée par un mécanisme thermodynamique plutôt que par la présence d'aérosols. Les mesures de réflectivité radar dans le cadre de la mission TRMM (Tropical Rainfall Measuring Mission) soulignent le contraste important entre l'intensité des ascendances mesurées au dessus des terres et des océans. Cependant, ce contraste en termes d'ascendance ne peut pas être attribué à une différence d'instabilité convective potentielle (CAPE) déterminée en référence à la flottabilité des masses d'air. Ce problème est résolu en dimensionnant celles-ci selon l'altitude de la base du nuage, comme cela avait été suggéré lors d'études précédentes. Une convection continentale associée à une forte activité électrique est donc favorisée par un rapport de Bowen surfacique plus important et par une plus grande instabilité convective en couche limite. Ceci conduit à une transformation plus efficace de l'instabilité convective potentielle en énergie cinétique des courants ascendants nuageux.

Publié le :
DOI : 10.1016/S1631-0705(02)01407-X
Keywords: aerosol, convection, islands, lightning, thermals, thunderstorm, updrafts
Mots-clés : aérosols, convection, foudre, thermique, orages, ascendances

Earle Williams 1 ; Sharon Stanfill 2

1 Parsons Laboratory, MIT, Cambridge, MA 02139, USA
2 MIT Lincoln Laboratory, Lexington, MA 02173, USA
@article{CRPHYS_2002__3_10_1277_0,
     author = {Earle Williams and Sharon Stanfill},
     title = {The physical origin of the land{\textendash}ocean contrast in lightning activity},
     journal = {Comptes Rendus. Physique},
     pages = {1277--1292},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01407-X},
     language = {en},
}
TY  - JOUR
AU  - Earle Williams
AU  - Sharon Stanfill
TI  - The physical origin of the land–ocean contrast in lightning activity
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1277
EP  - 1292
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01407-X
LA  - en
ID  - CRPHYS_2002__3_10_1277_0
ER  - 
%0 Journal Article
%A Earle Williams
%A Sharon Stanfill
%T The physical origin of the land–ocean contrast in lightning activity
%J Comptes Rendus. Physique
%D 2002
%P 1277-1292
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01407-X
%G en
%F CRPHYS_2002__3_10_1277_0
Earle Williams; Sharon Stanfill. The physical origin of the land–ocean contrast in lightning activity. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1277-1292. doi : 10.1016/S1631-0705(02)01407-X. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01407-X/

[1] C.E.P. Brooks The distribution of thunderstorms over the globe, Geophys. Mem. London, Volume 24 (1925), pp. 147-164

[2] F.J.W. Whipple On the association of the diurnal variation of electric potential gradient in fine weather with the distribution of thunderstorms over the globe, Quart. J. Roy. Met. Soc, Volume 55 (1929), pp. 1-17

[3] E.T. Pierce Some topics in atmospheric electricity (L.G. Smith, ed.), Recent Advances in Atmospheric Electricity, Pergamon Press, 1958, pp. 5-16

[4] R.E. Orville; R.W. Henderson The global distribution of midnight lightning: December 1977 to August 1978, Mon. Wea. Rev, Volume 114 (1986), pp. 2640-2653

[5] H.J. Christian et al. The lightning imaging sensor, Proceedings 11th Int. Conf. on Atmospheric Electricity, Guntersville, AL, NASA/CP-1999-209261, 1999, pp. 746-749

[6] E.R. Williams; S.J. Heckman The local diurnal variation of cloud electrification and the global diurnal variation of negative charge on the earth, J. Geophys. Res, Volume 98 (1993), pp. 5221-5234

[7] E.R. Williams; N.O. Renno An analysis of the conditional instability of the tropical atmosphere, 121 (1993), pp. 21-36

[8] E.R. Williams The Schumann resonance: a global tropical thermometer, Science, Volume 256 (1992), pp. 1184-1187

[9] E.R. Williams Global circuit response to seasonal variations in global surface air temperature, Mon. Wea. Rev, Volume 122 (1994), pp. 1917-1929

[10] E.R. Williams Global circuit response to temperature on distinct time scales: A status report (M. Hayakawa, ed.), Atmospheric and Ionospheric Phenomena Associated with Earthquakes, Terra Scientific, Tokyo, 1999

[11] C. Price Global surface temperatures and the atmospheric electric circuit, Geophys. Res. Lett, Volume 20 (1993), p. 1363

[12] M. Fullekrug; A. Fraser-Smith Global lightning and climate variability inferred from ELF field variations, Geophys. Res. Lett, Volume 24 (1998), pp. 2411-2414

[13] N. Reeve; R. Toumi Lightning activity as an indicator of climate change, Quart. J. Roy. Met. Soc, Volume 125 (1999), pp. 893-903

[14] R. Markson; C. Price Ionospheric potential as a proxy index for global temperature, Atmos. Res, Volume 51 (1999), pp. 309-314

[15] A. Gettelman, D.J. Seidel, M.C. Wheeler, R.J. Ross, Multi-decadal trends in tropical convective available potential energy, J. Geophys. Res., 2002, in press

[16] C. Lucas; M.A. LeMone; E.J. Zipser Reply to Michaud, L.M., Comment on “Convective available potential energy in the environment of oceanic and continental clouds”, J. Atmos. Sci, Volume 53 (1996), pp. 1212-1214

[17] J. Halverson; T. Rickenbach; B. Roy; H. Pierce; E. Williams Environmental characteristics of convective systems during TRMM-LBA, Mon. Wea. Rev, Volume 130 (2002), pp. 1493-1509

[18] F.-M. Breon; D. Tanre; S. Generoso Aerosol effect on cloud droplet size monitored by satellite, Science, Volume 295 (2002), pp. 834-838

[19] E.R. Williams, et al., Contrasting convective regimes over the Amazon: Implications for cloud electrification, J. Geophys. Res., 2002, in press

[20] R.E. Orville; G.R. Huffines; J. Nielsen-Gammon; R. Zhang; B. Ely; S. Steiger; S. Phillips; S. Allen; W. Read Enhancement of cloud-to-ground lightning over Houston, Texas, Geophys. Res. Lett, Volume 28 (2001), pp. 2597-2600

[21] F.H. Ludlam Clouds and Storms: The Behavior and Effect of Water in the Atmosphere, Pennsylvania State University Press, 1980

[22] W.R. Cotton; R.A. Anthes Storm and Cloud Dynamics, Academic Press, 1989

[23] H.R. Byers, R.R. Braham, The thunderstorm project, U.S. Weather Bureau, U.S. Dept. of Commerce, Washington, DC, 1949

[24] M.A. LeMone; E.J. Zipser Cumulonimbus vertical velocity events in GATE. Part I: Diameter, intensity and mass flux, J. Atmos. Sci, Volume 37 (1980), pp. 2444-2457

[25] WMO, World distribution of thunderstorm days, WMO/OMM, No. 21.TP. 21, Parts I and II, 1956

[26] E.R. Williams The electrification of severe storms (C.A. Doswell, ed.), Severe Convective Storms, American Meteorological Society, 2001, pp. 527-561

[27] E. Williams; S. Rutledge; S. Geotis; N. Renno; E. Rasmussen; T. Rickenback A radar and electrical study of tropical ‘hot towers’, J. Atmos. Sci, Volume 49 (1992), pp. 1386-1395

[28] M.B. Baker; H.J. Christian; J. Latham A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quart. J. Roy. Met. Soc, Volume 121 (1995), pp. 1525-1548

[29] M.B. Baker; A.M. Blyth; H.J. Christian; J. Latham; K.L. Miller; A.M. Gadian Relationships between lightning activity and various thundercloud parameters: Satellite and modeling studies, Atmos. Res, Volume 51 (1999), pp. 221-236

[30] A. Hogan Meteorological variation of maritime aerosols (A.F. Roddy; P.C. O'Connor, eds.), Atmospheric Aerosols and Nuclei, Galway University Press, Galway, Ireland, 1977, pp. 503-507

[31] D.P. Jorgenson; M.A. LeMone Vertical velocity characteristics of oceanic convection, J. Atmos. Sci, Volume 46 (1989), pp. 621-640

[32] C. Lucas; E. Zipser; M. LeMone Vertical velocity in oceanic convection off tropical Australia, J. Atmos. Sci, Volume 51 (1994), pp. 3183-3193

[33] G. Barnes Severe local storms in the tropics (C.A. Doswell, ed.), Severe Convective Storms, Meteorological Monographs, American Meteorological Society, 2001, pp. 359-432

[34] E.J. Zipser, Some views on ‘hot towers’ after 50 years of tropical field programs and two years of TRMM data, in: Meteorological Monographs, American Meteorological Society, 2002, in press

[35] B.A. Wielicki; R.M. Welch Cumulus cloud properties derived using Landsat satellite data, J. Clim. Appl. Met, Volume 25 (1986), pp. 261-276

[36] S. Rutledge; E. Williams; T. Keenan The Down Under Doppler and Electricity Experiment (DUNDEE): Overview and preliminary results, Bull. Am. Met. Soc, Volume 73 (1992), pp. 3-16

[37] A.H. Woodcock Soaring over the open sea, Scientific Monthly, Volume 55 (1942), pp. 1-7

[38] M. Bottomley; C.K. Folland; J. Hsuing; R.E. Newell; D.E. Parker Global Ocean Surface Temperature Atlas, UK Met. Office and Massachusetts Institute of Technology, 1990

[39] A.K. Betts The parameterization of deep convection (R.K. Smith, ed.), The Physics and Parameterization of Moist Atmospheric Convection, NATO ASI Series C, 505, Kluwer Academic, Dordrecht, 1997, pp. 255-279

[40] B.R. Morton; G.I. Taylor; J.S. Turner Turbulent gravitational convection for maintained and instantaneous sources, Proc. Roy. Soc. London A, Volume 234 (1956), pp. 1-23

[41] A.G. Williams; J.M. Hacker The composite shape and structure of coherent eddies in the convective boundary layer, Boundary-Layer Meteor, Volume 61 (1992), pp. 213-245

[42] H. Johari Mixing in thermals with and without buoyancy reversal, J. Atmos. Sci, Volume 49 (1992), pp. 1412-1426

[43] T.G. Kyle; W.R. Sand; D.J. Musil Fitting measurements of thunderstorm updraft profiles to model profiles, Mon. Wea. Rev, Volume 104 (1976), pp. 611-617

[44] C.A. Doswell Severe Convective Storms, Meteorological Monographs, 28, American Meteorological Society, November 2001

[45] H. Riehl; J.S. Malkus On the heat balance in the equatorial trough zone, Geophysica, Volume 6 (1958), pp. 503-538

[46] D. Henning Atlas of the Surface Heat Balance of the Continents, Gebrider Bortraeger, Berlin, 1989

[47] M.I. Budyko The Evolution of the Biosphere, Reidel, 1986

[48] E.W. McCaul; C. Cohen The impact of simulated storm structure and intensity on variations in the mixed layer and moist layer depths, Mon. Wea. Rev, Volume 130 (2002), pp. 1722-1748

[49] E.R. Toracinta; D.J. Cecil; E.J. Zipser; S.W. Nesbitt Radar, passive microwave and lightning characteristics of precipitating systems in the tropics, Mon. Wea. Rev, Volume 130 (2002), pp. 802-824

[50] E.R. Jayaratne Conditional instability and lightning activity in Gabarone, Botswana, Meteorol. Atmos. Phys, Volume 62 (1993), pp. 169-175

[51] E. Williams; K. Rothkin; D. Stevenson; D. Boccippio Global lightning variations caused by changes in thunderstorm flash rate and by changes in the number of thunderstorms, J. Appl. Met, Volume 39 (2000), pp. 2223-2230

[52] S.J. Goodman; D.J. Cecil Structure and characteristics of precipitation systems observed by TRMM, Preprints, 11th Conf. On Satellite Meteorology and Oceanography, 15–18 October, Madison, WI, American Meteorological Society, Boston (2001), pp. 464-467

  • Rolly Singh; Vikram Singh; Alok Sagar Gautam; Sanjeev Kumar; Karan Singh; Pushpendra Singh Soni; Alka Gautam; Sneha Gautam Temporal and Spatial Variations in Lightning Activity and Meteorological Parameters Across the Indian Himalayan Region and Indo-Gangetic Plains, Asia-Pacific Journal of Atmospheric Sciences, Volume 61 (2025) no. 2 | DOI:10.1007/s13143-025-00391-x
  • Rupraj Biswasharma; Gour Prasad Pramanik; N. Umakanth; Imolemba Longkumer; Imlisunup Pongener; Mahen Konwar; Debajyoti Samanta; D.M. Lal; V. Gopalakrishnan; Sunil D. Pawar; A.K. Kamra; Sanjay Sharma Evaluating thunderstorm characteristics and air quality during the COVID-19 lockdown in Northeastern and Eastern India, Atmospheric Research, Volume 320 (2025), p. 108053 | DOI:10.1016/j.atmosres.2025.108053
  • Zebiao Zhang; Tao Deng; Xue Zhang; Hanjie Huang; Guowen He; Chenguang Tang; Lüwen Chen; Jeremy Cheuk-Hin Leung; Hui Xiao; Shanshan Ouyang; Qing Wang; Gongke Rao; Dui Wu; Cheng Wu The influence of aerosols on lightning activity in the Pearl River Delta of China, Atmospheric Research, Volume 321 (2025), p. 108066 | DOI:10.1016/j.atmosres.2025.108066
  • Patrick C. Andrews; Kerry H. Cook; Edward K. Vizy Cloud-top brightness temperature inconsistent indicator of extreme surface rainfall in western and central equatorial Africa, Climate Dynamics, Volume 63 (2025) no. 5 | DOI:10.1007/s00382-025-07681-0
  • K. Nandhulal; Hamza Varikoden; R. Vishnu A regional study on convective lightning activity and its interaction with sea surface temperature and thermodynamic indices, Discover Atmosphere, Volume 3 (2025) no. 1 | DOI:10.1007/s44292-025-00032-y
  • Jeni Nepolian Victor; Adarsh Dube; Devendraa Siingh; Adarsh Kumar Kamra Impact of the COVID-19 lockdown on zonal variability of lightning activity over the Indo-Gangetic Plains, Environmental Science and Pollution Research, Volume 32 (2025) no. 23, p. 14049 | DOI:10.1007/s11356-025-36498-x
  • B. Abida Choudhury; M.I.R. Tinmaker Thermodynamic control of lightning activity in premonsoon and monsoon season over the Indian region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 268 (2025), p. 106410 | DOI:10.1016/j.jastp.2024.106410
  • Jiaxin Ding; Wenjuan Zhang; Dong Zheng; Yijun Zhang; Wen Yao Thunderstorm Structure and Lightning Properties in South China and over the South China Sea: A Comparative Study, Journal of Meteorological Research, Volume 39 (2025) no. 2, p. 415 | DOI:10.1007/s13351-025-4091-8
  • Jagabandhu Panda; Debashis Paul; Ankan Sarkar; Asmita Mukherjee; Ipshita Bhasi; Geo Tom; Sushant Das; Nitin Lohan; Debjyoti Roy; Sushil Kumar Severe Storms in Changing Climate Scenario with a Distinctive Emphasis on South Asia and India, Severe Storms (2025), p. 563 | DOI:10.1007/978-981-97-7075-5_22
  • Ariadi Hazmi; Muhammad Imran Hamid; Rudy Fernandez; Hanalde Andre; Rizki Wahyu Pratama; Muhammad Miftahur Rahman, 3RD CONFERENCE ON INNOVATION IN TECHNOLOGY AND ENGINEERING SCIENCE 2022 (CITES2022): Innovation in Technology and Science for New Era of Engineering Professionalism, Volume 2891 (2024), p. 040001 | DOI:10.1063/5.0200950
  • Alok Sagar Gautam; Sanjeev Kumar; Karan Singh; Shyam Narayan Nautiyal; Sneha Gautam Impact Assessments of Aerosol Optical Depth and Lightning on Thunderstorm Over the Region of Uttarakhand, India, Aerosol Optical Depth and Precipitation (2024), p. 19 | DOI:10.1007/978-3-031-55836-8_2
  • Toshi Matsui; Daniel Hernandez-Deckers; Scott E. Giangrande; Thiago S. Biscaro; Ann Fridlind; Scott Braun A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon, Atmospheric Chemistry and Physics, Volume 24 (2024) no. 18, p. 10793 | DOI:10.5194/acp-24-10793-2024
  • Esther S. Breuninger; Julie Tolu; Iris Thurnherr; Franziska Aemisegger; Aryeh Feinberg; Sylvain Bouchet; Jeroen E. Sonke; Véronique Pont; Heini Wernli; Lenny H. E. Winkel Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements, Atmospheric Chemistry and Physics, Volume 24 (2024) no. 4, p. 2491 | DOI:10.5194/acp-24-2491-2024
  • Jinming Ge; Xiaoyu Hu; Qingyu Mu; Bochun Liu; Zeen Zhu; Jiajing Du; Jing Su; Qinghao Li; Chi Zhang Contrasting characteristics of continental and oceanic deep convective systems at different life stages from CloudSat observations, Atmospheric Research, Volume 298 (2024), p. 107157 | DOI:10.1016/j.atmosres.2023.107157
  • Mace Bentley; Tobias Gerken; Zhuojun Duan; Dudley Bonsal; Henry Way; Endre Szakal; Mia Pham; Hunter Donaldson; Lucie Griffith Toward untangling thunderstorm-aerosol relationships: An observational study of regions centered on Washington, DC and Kansas City, MO, Atmospheric Research, Volume 304 (2024), p. 107402 | DOI:10.1016/j.atmosres.2024.107402
  • Jean Kasereka Kigotsi; Serge Soula; Gilles Athier; Louis Kongoda Lisika; Keun-Ok Lee Analysis of the lightning activity during 18 years in the Congo Basin, Atmospheric Research, Volume 309 (2024), p. 107577 | DOI:10.1016/j.atmosres.2024.107577
  • Xiushu Qie; Yoav Yair; Shaoxuan Di; Zifan Huang; Rubin Jiang Lightning response to temperature and aerosols, Environmental Research Letters, Volume 19 (2024) no. 8, p. 083003 | DOI:10.1088/1748-9326/ad63bf
  • Cynthia Whaley; Montana Etten-Bohm; Courtney Schumacher; Ayodeji Akingunola; Vivek Arora; Jason Cole; Michael Lazare; David Plummer; Knut von Salzen; Barbara Winter A new lightning scheme in the Canadian Atmospheric Model (CanAM5.1): implementation, evaluation, and projections of lightning and fire in future climates, Geoscientific Model Development, Volume 17 (2024) no. 18, p. 7141 | DOI:10.5194/gmd-17-7141-2024
  • Konatham Prasanna; Venkatachalam Gopalakrishnan; Sunil D. Pawar Trends of lightning flash density over India during different seasons, International Journal of Climatology, Volume 44 (2024) no. 5, p. 1587 | DOI:10.1002/joc.8400
  • Joyjit Mandal; Chandrani Chatterjee; Saurabh Das An explainable machine learning technique to forecast lightning density over North-Eastern India, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 259 (2024), p. 106255 | DOI:10.1016/j.jastp.2024.106255
  • Lisa Gassen; Leonie Esters; Mariana Ribas-Ribas; Oliver Wurl The impact of rainfall on the sea surface salinity: a mesocosm study, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-56915-4
  • Juliet Pilewskie; Graeme Stephens; Hanii Takahashi; Tristan L’Ecuyer A Multi-satellite Perspective on “Hot Tower” Characteristics in the Equatorial Trough Zone, Surveys in Geophysics, Volume 45 (2024) no. 6, p. 1933 | DOI:10.1007/s10712-024-09868-2
  • Vasubandhu Misra Large-Scale Aspects of Tropical Weather Extremes, An Introduction to Large-Scale Tropical Meteorology (2023), p. 221 | DOI:10.1007/978-3-031-12887-5_9
  • Ashok Kumar Gupta; Akash Deshmukh; Deepak Waman; Sachin Patade; Arti Jadav; Vaughan T. J. Phillips; Aaron Bansemer; Jorge A. Martins; Fabio L. T. Gonçalves The microphysics of the warm-rain and ice crystal processes of precipitation in simulated continental convective storms, Communications Earth Environment, Volume 4 (2023) no. 1 | DOI:10.1038/s43247-023-00884-5
  • Sarah D. Bang; Sarah M. Stough; Timothy J. Lang; Patrick N. Gatlin The Multiplatform Precipitation Feature (MPF) Database: A Storm‐Centric Synthesis of Space‐ and Ground‐Based Precipitation and Lightning Data Sets for Convective Studies, Earth and Space Science, Volume 10 (2023) no. 11 | DOI:10.1029/2023ea003137
  • Hanii Takahashi; Zhengzhao Johnny Luo; Graeme Stephens; Jake P. Mulholland Revisiting the Land‐Ocean Contrasts in Deep Convective Cloud Intensity Using Global Satellite Observations, Geophysical Research Letters, Volume 50 (2023) no. 5 | DOI:10.1029/2022gl102089
  • Tomeu Rigo Warm Rain Analysis from Remote Sensing Data in the Metropolitan Area of Barcelona for 2015–2022, Hydrology, Volume 10 (2023) no. 7, p. 142 | DOI:10.3390/hydrology10070142
  • Chandrani Chatterjee; Joyjit Mandal; Saurabh Das A machine learning approach for prediction of seasonal lightning density in different lightning regions of India, International Journal of Climatology, Volume 43 (2023) no. 6, p. 2862 | DOI:10.1002/joc.8005
  • G. C. Cuchiara; A. Fried; M. C. Barth; M. M. Bela; C. R. Homeyer; J. Walega; P. Weibring; D. Richter; S. Woods; A. Beyersdorf; T. V. Bui; J. Dean‐Day Effect of Marine and Land Convection on Wet Scavenging of Ozone Precursors Observed During a SEAC4RS Case Study, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 5 | DOI:10.1029/2022jd037107
  • K. Jeeva; A. K. Sinha; Gopi K. Seemala; S. D. Pawar; A. Guha; A. K. Kamra; E. R. Williams; M. Ravichandran The Global Representativeness of Fair‐Weather Atmospheric Electricity Parameters From the Coastal Station Maitri, Antarctica, Journal of Geophysical Research: Atmospheres, Volume 128 (2023) no. 9 | DOI:10.1029/2022jd037696
  • Jia-xin DING; Yi-jun ZHANG; Dong ZHENG; Wen YAO; Wen-juan ZHANG Thunderstorm and Lightning Activities over Western Pacific, Northern Indian Ocean and South China Sea Along with Their Adjacent Lands, Journal of Tropical Meteorology, Volume 29 (2023) no. 3, p. 347 | DOI:10.3724/j.1006-8775.2023.026
  • Jeni N. Victor; Shaista Afreen; Devendraa Siingh; Sagarika Chandra; R. P. Singh; Swapnil S. Potdar; Gowher Bashir; S. Kazhugasalamoorthy; R. Nirmal Kumar; Vatsala Singh; Nissar Ahmad Electrical Characteristics of Thunderstorms Under Different Weather Conditions in the Kashmir Valley, India, Pure and Applied Geophysics, Volume 180 (2023) no. 3, p. 1185 | DOI:10.1007/s00024-022-03223-5
  • Kang Yang; Zhien Wang; Min Deng; Brennan Dettmann Combining CloudSat/CALIPSO and MODIS measurements to reconstruct tropical convective cloud structure, Remote Sensing of Environment, Volume 287 (2023), p. 113478 | DOI:10.1016/j.rse.2023.113478
  • P. G. Nisha; T. S. Pranesha; M. Ravichandran Role of north Indian Ocean on the lightning flash rate of the Indian land region, Theoretical and Applied Climatology, Volume 153 (2023) no. 1-2, p. 73 | DOI:10.1007/s00704-023-04517-x
  • McCullen Sandora; Vladimir Airapetian; Luke Barnes; Geraint F. Lewis; Ileana Pérez-Rodríguez Multiverse Predictions for Habitability: Origin of Life Scenarios, Universe, Volume 9 (2023) no. 1, p. 42 | DOI:10.3390/universe9010042
  • Jiwen Fan; Zhanqing Li Aerosol interactions with deep convective clouds, Aerosols and Climate (2022), p. 571 | DOI:10.1016/b978-0-12-819766-0.00001-8
  • Sergio Castillo; Tomeu Rigo; Carme Farnell Can the Correlation between Radar and Cloud-to-Ground Daily Fields Help to Identify the Different Rainfall Regimes? The Case of Catalonia, Atmosphere, Volume 13 (2022) no. 5, p. 808 | DOI:10.3390/atmos13050808
  • Nikolay Viktorovich Baranovskiy; Viktoriya Andreevna Vyatkina; Aleksey Mikhailovich Chernyshov Deterministic–Probabilistic Prediction of Forest Fires from Lightning Activity Taking into Account Aerosol Emissions, Atmosphere, Volume 14 (2022) no. 1, p. 29 | DOI:10.3390/atmos14010029
  • Andrey Evtushenko; Nikolay Ilin; Ekaterina Svechnikova Parameterization and global distribution of sprites based on the WWLLN data, Atmospheric Research, Volume 276 (2022), p. 106272 | DOI:10.1016/j.atmosres.2022.106272
  • Fan Liu; Feiyue Mao; Daniel Rosenfeld; Zengxin Pan; Lin Zang; Yannian Zhu; Jianhua Yin; Wei Gong Opposing comparable large effects of fine aerosols and coarse sea spray on marine warm clouds, Communications Earth Environment, Volume 3 (2022) no. 1 | DOI:10.1038/s43247-022-00562-y
  • Ashraf Dewan; K. M. Ashraful Islam; Tanzim Rahman Fariha; Md Mahbub Murshed; Asif Ishtiaque; Mohammed Sarfaraz Gani Adnan; Zobaidul Kabir; Mohammad Barad Hossain Chowdhury Spatial Pattern and Land Surface Features Associated with Cloud-to-Ground Lightning in Bangladesh: An Exploratory Study, Earth Systems and Environment, Volume 6 (2022) no. 2, p. 437 | DOI:10.1007/s41748-022-00310-4
  • Ji Yang; Kun Zhao; Yuanyuan Zheng; Haonan Chen; Gang Chen Microphysical Structure of Thunderstorms and Their Lightning Activity During the mei‐yu and Post‐mei‐yu Periods Over Nanjing, Yangtze River Delta, Geophysical Research Letters, Volume 49 (2022) no. 23 | DOI:10.1029/2022gl100952
  • Pengguo Zhao; Hui Xiao; Chang Liu; Yunjun Zhou; Xiaoyang Xu; Ke Hao Evaluating a simple proxy for climatic cloud‐to‐ground lightning in Sichuan Province with complex terrain, Southwest China, International Journal of Climatology, Volume 42 (2022) no. 7, p. 3909 | DOI:10.1002/joc.7451
  • R. A. J. Neggers; P. J. Griewank A Decentralized Approach for Modeling Organized Convection Based on Thermal Populations on Microgrids, Journal of Advances in Modeling Earth Systems, Volume 14 (2022) no. 10 | DOI:10.1029/2022ms003042
  • Lena Heuscher; Chuntao Liu; Patrick Gatlin; Walter A. Petersen Relationship Between Lightning, Precipitation, and Environmental Characteristics at Mid‐/High Latitudes From a GLM and GPM Perspective, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 13 | DOI:10.1029/2022jd036894
  • Chuanhong Zhao; Yijun Zhang; Dong Zheng; Xiantong Liu; Yang Zhang; Xiangpeng Fan; Wen Yao; Wenjuan Zhang Using Polarimetric Radar Observations to Characterize First Echoes of Thunderstorms and Nonthunderstorms: A Comparative Study, Journal of Geophysical Research: Atmospheres, Volume 127 (2022) no. 23 | DOI:10.1029/2022jd036671
  • M. I. R. Tinmaker; Sachin D. Ghude; Arun K. Dwivedi; Sahidul Islam; Santosh H. Kulkarni; Manoj Khare; D. M. Chate Relationships among lightning, rainfall, and meteorological parameters over oceanic and land regions of India, Meteorology and Atmospheric Physics, Volume 134 (2022) no. 1 | DOI:10.1007/s00703-021-00841-x
  • Deen Mani Lal; Mata Mahakur; Venkatachalam Gopalakrishnan; Manoj Kr. Srivastava; Sachin Dinkar Ghude; Sunil Dnyandeo Pawar Lightning over Tibetan Plateau and its relation with winds associated with CAPE, Meteorology and Atmospheric Physics, Volume 134 (2022) no. 6 | DOI:10.1007/s00703-022-00930-5
  • Zengxin Pan; Feiyue Mao; Daniel Rosenfeld; Yannian Zhu; Lin Zang; Xin Lu; Joel A. Thornton; Robert H. Holzworth; Jianhua Yin; Avichay Efraim; Wei Gong Coarse sea spray inhibits lightning, Nature Communications, Volume 13 (2022) no. 1 | DOI:10.1038/s41467-022-31714-5
  • Ravindranadh Koutavarapu; N. Umakanth; B. T. P. Madhav; M. C. Rao; Dong-Yeon Lee; Jaesool Shim Study of Pre-monsoon CAPE Development over Puducherry, India, Thalassas: An International Journal of Marine Sciences, Volume 38 (2022) no. 1, p. 459 | DOI:10.1007/s41208-022-00402-y
  • Alok Sagar Gautam; Abhishek Joshi; Sagarika Chandra; Umesh Chandra Dumka; Devendraa Siingh; Ram Pal Singh Relationship between Lightning and Aerosol Optical Depth over the Uttarakhand Region in India: Thermodynamic Perspective, Urban Science, Volume 6 (2022) no. 4, p. 70 | DOI:10.3390/urbansci6040070
  • Qiangli Zou; Xiaopeng Cui; Shifeng Hao The Statistical Relationship of Lightning Activity and Short-Duration Rainfall Events over Guangzhou, China, in 2017, Weather and Forecasting, Volume 37 (2022) no. 5, p. 601 | DOI:10.1175/waf-d-21-0161.1
  • Rohit Chakraborty; Arindam Chakraborty; Ghouse Basha; Madineni Venkat Ratnam Lightning occurrences and intensity over the Indian region: long-term trends and future projections, Atmospheric Chemistry and Physics, Volume 21 (2021) no. 14, p. 11161 | DOI:10.5194/acp-21-11161-2021
  • Jennifer G. Wilson; Kenneth L. Cummins Thunderstorm and fair-weather quasi-static electric fields over land and ocean, Atmospheric Research, Volume 257 (2021), p. 105618 | DOI:10.1016/j.atmosres.2021.105618
  • Maher A. Dayeh; Ashraf Farahat; Haifa Ismail-Aldayeh; Abdelgadir Abuelgasim Effects of aerosols on lightning activity over the Arabian Peninsula, Atmospheric Research, Volume 261 (2021), p. 105723 | DOI:10.1016/j.atmosres.2021.105723
  • F.J. Pérez-Invernón; Heidi Huntrieser; F.J. Gordillo-Vázquez; Sergio Soler Influence of the COVID-19 lockdown on lightning activity in the Po Valley, Atmospheric Research, Volume 263 (2021), p. 105808 | DOI:10.1016/j.atmosres.2021.105808
  • Yong Han; Hao Luo; Yonghua Wu; Yijun Zhang; Wenjie Dong Cloud ice fraction governs lightning rate at a global scale, Communications Earth Environment, Volume 2 (2021) no. 1 | DOI:10.1038/s43247-021-00233-4
  • Y. Liu; E. Williams; Z. Li; A. Guha; J. Lapierre; M. Stock; S. Heckman; Y. Zhang; E. DiGangi Lightning Enhancement in Moist Convection With Smoke‐Laden Air Advected From Australian Wildfires, Geophysical Research Letters, Volume 48 (2021) no. 11 | DOI:10.1029/2020gl092355
  • J. P. Mulholland; J. M. Peters; H. Morrison How Does LCL Height Influence Deep Convective Updraft Width?, Geophysical Research Letters, Volume 48 (2021) no. 13 | DOI:10.1029/2021gl093316
  • A A Azani; D A Pratama; N Kusumawardani; I Rusmala; D Septiadi Spatio-Temporal Lightning Analysis Over North Sulawesi in 2019 - 2020, IOP Conference Series: Earth and Environmental Science, Volume 893 (2021) no. 1, p. 012009 | DOI:10.1088/1755-1315/893/1/012009
  • Wen Hui; Qiang Guo Preliminary characteristics of measurements from Fengyun-4A Lightning Mapping Imager, International Journal of Remote Sensing, Volume 42 (2021) no. 13, p. 4922 | DOI:10.1080/01431161.2021.1906983
  • Thomas Lavigne; Chuntao Liu; Joseph Hill; Eric Bruning Observations from the one year electric field Study-North Slope of Alaska (OYES-NSA) field campaign, and their implications for observing the distribution of global electrified cloud activity, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 214 (2021), p. 105528 | DOI:10.1016/j.jastp.2020.105528
  • Narayan Prasad Damase; Trisanu Banik; Bapan Paul; Kumarjit Saha; Shriram Sharma; Barin Kumar De; Anirban Guha Comparative study of lightning climatology and the role of meteorological parameters over the Himalayan region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 219 (2021), p. 105527 | DOI:10.1016/j.jastp.2020.105527
  • M.I.R. Tinmaker; Chinmay K. Jena; Sachin D. Ghude; Arun Kumar Dwivedi; Sahidul Islam; Santosh H. Kulkarni; Manoj K. Khare; D.M. Chate Relationship of lightning with different weather parameters during transition period of dry to wet season over Indian region, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 220 (2021), p. 105673 | DOI:10.1016/j.jastp.2021.105673
  • Sarah M. Stough; Lawrence D. Carey; Christopher J. Schultz; Daniel J. Cecil Examining Conditions Supporting the Development of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 16 | DOI:10.1029/2021jd034582
  • Wei‐Yi Cheng; Daehyun Kim; Robert H. Holzworth CAPE Threshold for Lightning Over the Tropical Ocean, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 20 | DOI:10.1029/2021jd035621
  • E. Williams; T. Bozóki; G. Sátori; C. Price; P. Steinbach; A. Guha; Y. Liu; C. D. Beggan; M. Neska; R. Boldi; M. Atkinson Evolution of Global Lightning in the Transition From Cold to Warm Phase Preceding Two Super El Niño Events, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 3 | DOI:10.1029/2020jd033526
  • Douglas C. Stolz; Kelsey R. Bilsback; Jeffrey R. Pierce; Steven A. Rutledge Evaluating Empirical Lightning Parameterizations in Global Atmospheric Models, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 4 | DOI:10.1029/2020jd033695
  • Zengxin Pan; Daniel Rosenfeld; Yannian Zhu; Feiyue Mao; Wei Gong; Lin Zang; Xin Lu Observational Quantification of Aerosol Invigoration for Deep Convective Cloud Lifecycle Properties Based on Geostationary Satellite, Journal of Geophysical Research: Atmospheres, Volume 126 (2021) no. 9 | DOI:10.1029/2020jd034275
  • Sunita Verma; Pramod Kumar Yadava; D. M. Lal; R. K. Mall; Harshbardhan Kumar; Swagata Payra Role of Lightning NOx in Ozone Formation: A Review, Pure and Applied Geophysics, Volume 178 (2021) no. 4, p. 1425 | DOI:10.1007/s00024-021-02710-5
  • M. I. R. Tinmaker; Arun K. Dwivedi; Sahidul Islam; Sachin D. Ghude; S. H. Kulkarni; Manoj Khare; D. M. Chate Lightning Activity Variability with Prevailing Weather Parameters and Aerosol Loading Over Dry and Wet Regions of India, Pure and Applied Geophysics, Volume 178 (2021) no. 4, p. 1445 | DOI:10.1007/s00024-021-02695-1
  • Xin Zhang; Yan Yin; Julia Kukulies; Yang Li; Xiang Kuang; Chuan He; Jeff L. Lapierre; Dongxin Jiang; Jinghua Chen Revisiting Lightning Activity and Parameterization Using Geostationary Satellite Observations, Remote Sensing, Volume 13 (2021) no. 19, p. 3866 | DOI:10.3390/rs13193866
  • Tristan H. Abbott; Timothy W. Cronin Aerosol invigoration of atmospheric convection through increases in humidity, Science, Volume 371 (2021) no. 6524, p. 83 | DOI:10.1126/science.abc5181
  • Л.Д. Тарабукина; В.И. Козлов; Д.E. Иннокентьев Analysis of 11-years dynamics in spatial distribution of lightning density in North Asia, Вестник КРАУНЦ. Физико-математические науки (2021) no. 1, p. 159 | DOI:10.26117/2079-6641-2021-34-1-159-173
  • Pengguo Zhao; Zhanqing Li; Hui Xiao; Fang Wu; Youtong Zheng; Maureen C. Cribb; Xiaoai Jin; Yunjun Zhou Distinct aerosol effects on cloud-to-ground lightning in the plateau and basin regions of Sichuan, Southwest China, Atmospheric Chemistry and Physics, Volume 20 (2020) no. 21, p. 13379 | DOI:10.5194/acp-20-13379-2020
  • Sven-Erik Enno; Jacqueline Sugier; Regina Alber; Mark Seltzer Lightning flash density in Europe based on 10 years of ATDnet data, Atmospheric Research, Volume 235 (2020), p. 104769 | DOI:10.1016/j.atmosres.2019.104769
  • Xueke Wu; Tie Yuan; Kai Qie; Jiali Luo Geographical distribution of extreme deep and intense convective storms on Earth, Atmospheric Research, Volume 235 (2020), p. 104789 | DOI:10.1016/j.atmosres.2019.104789
  • Eder P. Vendrasco; Luiz A.T. Machado; Carolina S. Araujo; Jean-François Ribaud; Rute C. Ferreira Potential use of the GLM for nowcasting and data assimilation, Atmospheric Research, Volume 242 (2020), p. 105019 | DOI:10.1016/j.atmosres.2020.105019
  • Zheng Shi; HaiChao Wang; YongBo Tan; LuYing Li; ChunSun Li Influence of aerosols on lightning activities in central eastern parts of China, Atmospheric Science Letters, Volume 21 (2020) no. 2 | DOI:10.1002/asl.957
  • Y. Liu; A. Guha; R. Said; E. Williams; J. Lapierre; M. Stock; S. Heckman Aerosol Effects on Lightning Characteristics: A Comparison of Polluted and Clean Regimes, Geophysical Research Letters, Volume 47 (2020) no. 9 | DOI:10.1029/2019gl086825
  • Lizandro P. de Abreu; Weber A. Gonçalves; Enrique V. Mattos; Rachel I. Albrecht Assessment of the total lightning flash rate density (FRD) in northeast Brazil (NEB) based on TRMM orbital data from 1998 to 2013, International Journal of Applied Earth Observation and Geoinformation, Volume 93 (2020), p. 102195 | DOI:10.1016/j.jag.2020.102195
  • Aryeh J. Drager; Leah D. Grant; Susan C. van den Heever Cold Pool Responses to Changes in Soil Moisture, Journal of Advances in Modeling Earth Systems, Volume 12 (2020) no. 8 | DOI:10.1029/2019ms001922
  • Shrayasi Samanta; Bhishma Tyagi; Naresh Krishna Vissa; Rajesh Kumar Sahu A new thermodynamic index for thunderstorm detection based on cloud base height and equivalent potential temperature, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 207 (2020), p. 105367 | DOI:10.1016/j.jastp.2020.105367
  • Ji Yang; Kun Zhao; Xingchao Chen; Anning Huang; Yuanyuan Zheng; Kangyuan Sun Subseasonal and Diurnal Variability in Lightning and Storm Activity over the Yangtze River Delta, China, during Mei-yu Season, Journal of Climate, Volume 33 (2020) no. 12, p. 5013 | DOI:10.1175/jcli-d-19-0453.1
  • Maayan Harel; Colin Price Thunderstorm Trends over Africa, Journal of Climate, Volume 33 (2020) no. 7, p. 2741 | DOI:10.1175/jcli-d-18-0781.1
  • Tong Ren; Ping Yang; Courtney Schumacher; Xianglei Huang; Wuyin Lin Impact of Cloud Longwave Scattering on Radiative Fluxes Associated With the Madden‐Julian Oscillation in the Indian Ocean and Maritime Continent, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 13 | DOI:10.1029/2020jd032591
  • Sarah M. Stough; Lawrence D. Carey Observations of Anomalous Charge Structures in Supercell Thunderstorms in the Southeastern United States, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 17 | DOI:10.1029/2020jd033012
  • Weixin Xu Thunderstorm Climatologies and Their Relationships to Total and Extreme Precipitation in China, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 19 | DOI:10.1029/2020jd033152
  • Nikolay V. Ilin; Nikolay N. Slyunyaev; Evgeny A. Mareev Toward a Realistic Representation of Global Electric Circuit Generators in Models of Atmospheric Dynamics, Journal of Geophysical Research: Atmospheres, Volume 125 (2020) no. 6 | DOI:10.1029/2019jd032130
  • Toshi Matsui; Brenda Dolan; Takamichi Iguchi; Steven A. Rutledge; Wei-Kuo Tao; Stephen Lang Polarimetric Radar Characteristics of Simulated and Observed Intense Convective Cores for a Midlatitude Continental and Tropical Maritime Environment, Journal of Hydrometeorology, Volume 21 (2020) no. 3, p. 501 | DOI:10.1175/jhm-d-19-0185.1
  • Zachary R. Hansen; Larissa E. Back; Peigen Zhou Boundary Layer Quasi-Equilibrium Limits Convective Intensity Enhancement from the Diurnal Cycle in Surface Heating, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 1, p. 217 | DOI:10.1175/jas-d-18-0346.1
  • Vaughan T. J. Phillips; Marco Formenton; Vijay P. Kanawade; Linus R. Karlsson; Sachin Patade; Jiming Sun; Christelle Barthe; Jean-Pierre Pinty; Andrew G. Detwiler; Weitao Lyu; Sarah A. Tessendorf Multiple Environmental Influences on the Lightning of Cold-Based Continental Cumulonimbus Clouds. Part I: Description and Validation of Model, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 12, p. 3999 | DOI:10.1175/jas-d-19-0200.1
  • Youtong Zheng; Mirjana Sakradzija; Seoung-Soo Lee; Zhanqing Li Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part II: Continental Conditions, Journal of the Atmospheric Sciences, Volume 77 (2020) no. 4, p. 1313 | DOI:10.1175/jas-d-19-0301.1
  • Wen Hui; Wenjuan Zhang; Weitao Lyu; Pengfei Li Preliminary Observations from the China Fengyun-4A Lightning Mapping Imager and Its Optical Radiation Characteristics, Remote Sensing, Volume 12 (2020) no. 16, p. 2622 | DOI:10.3390/rs12162622
  • Donald M Glaser; Hilairy Ellen Hartnett; Steven J Desch; Cayman T Unterborn; Ariel Anbar; Steffen Buessecker; Theresa Fisher; Steven Glaser; Stephen R Kane; Carey M Lisse; Camerian Millsaps; Susanne Neuer; Joseph G O’Rourke; Nuno Santos; Sara Imari Walker; Mikhail Zolotov Detectability of Life Using Oxygen on Pelagic Planets and Water Worlds, The Astrophysical Journal, Volume 893 (2020) no. 2, p. 163 | DOI:10.3847/1538-4357/ab822d
  • L Tarabukina; V. Kozlov; R. Karimov, 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon) (2019), p. 1 | DOI:10.1109/fareastcon.2019.8934892
  • Zheng Shi; LuYing Li; YongBo Tan; HaiChao Wang; ChunSun Li A Numerical Study of Aerosol Effects on Electrification with Different Intensity Thunderclouds, Atmosphere, Volume 10 (2019) no. 9, p. 508 | DOI:10.3390/atmos10090508
  • Reuven H. Heiblum; Lital Pinto; Orit Altaratz; Guy Dagan; Ilan Koren Core and margin in warm convective clouds – Part 1: Core types and evolution during a cloud's lifetime, Atmospheric Chemistry and Physics, Volume 19 (2019) no. 16, p. 10717 | DOI:10.5194/acp-19-10717-2019
  • Kenneth L. Cummins; Jennifer G. Wilson; Amy S. Eichenbaum The Impact of Cloud-To-Ground Lightning Type on the Differences in Return Stroke Peak Current Over Land and Ocean, IEEE Access, Volume 7 (2019), p. 174774 | DOI:10.1109/access.2019.2956685
  • Sarah D. Bang; Edward J. Zipser Tropical Oceanic Thunderstorms Near Kwajalein and the Roles of Evolution, Organization, and Forcing in Their Electrification, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 2, p. 544 | DOI:10.1029/2018jd029320
  • G. R. Marion; R. J. Trapp The Dynamical Coupling of Convective Updrafts, Downdrafts, and Cold Pools in Simulated Supercell Thunderstorms, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 2, p. 664 | DOI:10.1029/2018jd029055
  • C.A. Morales Rodriguez Thunderstorm Efficiency Regimes in South America as Observed by STARNET and TRMM, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 21, p. 11428 | DOI:10.1029/2019jd030950
  • Nana Liu; Chuntao Liu; Philippe E. Tissot A Bayesian‐Like Approach to Describe the Regional Variation of High‐Flash Rate Thunderstorms From Thermodynamic and Kinematic Environment Variables, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 23, p. 12507 | DOI:10.1029/2019jd031254
  • Youtong Zheng Theoretical Understanding of the Linear Relationship between Convective Updrafts and Cloud-Base Height for Shallow Cumulus Clouds. Part I: Maritime Conditions, Journal of the Atmospheric Sciences, Volume 76 (2019) no. 8, p. 2539 | DOI:10.1175/jas-d-18-0323.1
  • Yen-Jung Wu Electricity in the Atmosphere—Elves, Reference Module in Earth Systems and Environmental Sciences (2019) | DOI:10.1016/b978-0-12-409548-9.11738-5
  • Guido Paliaga; Carlo Donadio; Marina Bernardi; Francesco Faccini High-Resolution Lightning Detection and Possible Relationship with Rainfall Events over the Central Mediterranean Area, Remote Sensing, Volume 11 (2019) no. 13, p. 1601 | DOI:10.3390/rs11131601
  • Sanjib Kumar Kar; Yuei-An Liou Influence of Land Use and Land Cover Change on the Formation of Local Lightning, Remote Sensing, Volume 11 (2019) no. 4, p. 407 | DOI:10.3390/rs11040407
  • M. I. R. Tinmaker; Sachin D. Ghude; D. M. Chate Land-sea contrasts for climatic lightning activity over Indian region, Theoretical and Applied Climatology, Volume 138 (2019) no. 1-2, p. 931 | DOI:10.1007/s00704-019-02862-4
  • Qianqian Wang; Zhanqing Li; Jianping Guo; Chuanfeng Zhao; Maureen Cribb The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements?, Atmospheric Chemistry and Physics, Volume 18 (2018) no. 17, p. 12797 | DOI:10.5194/acp-18-12797-2018
  • Daeho Jin; Lazaros Oreopoulos; Dongmin Lee; Nayeong Cho; Jackson Tan Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean, Atmospheric Chemistry and Physics, Volume 18 (2018) no. 4, p. 3065 | DOI:10.5194/acp-18-3065-2018
  • B. Padmakumari; R.S. Maheskumar; G. Harikishan; S.B. Morwal; J.R. Kulkarni Rain-shadow: An area harboring “Gray Ocean” clouds, Atmospheric Research, Volume 205 (2018), p. 70 | DOI:10.1016/j.atmosres.2018.02.005
  • S. B. Morwal; S. G. Narkhedkar; B. Padmakumari; R. S. Maheskumar; J. R. Kulkarni Characteristics of precipitating monsoon clouds over rain-shadow and drought-hit regions of India using radar, Climate Dynamics, Volume 50 (2018) no. 9-10, p. 3571 | DOI:10.1007/s00382-017-3826-3
  • D. M. Lal; Sachin D. Ghude; M. Mahakur; R. T. Waghmare; S. Tiwari; Manoj K. Srivastava; G. S. Meena; D. M. Chate Relationship between aerosol and lightning over Indo-Gangetic Plain (IGP), India, Climate Dynamics, Volume 50 (2018) no. 9-10, p. 3865 | DOI:10.1007/s00382-017-3851-2
  • David M. Romps; Alexander B. Charn; Robert H. Holzworth; William E. Lawrence; John Molinari; David Vollaro CAPE Times P Explains Lightning Over Land But Not the Land‐Ocean Contrast, Geophysical Research Letters, Volume 45 (2018) no. 22 | DOI:10.1029/2018gl080267
  • Yu Wang; Yalei You; Mark Kulie Global Virga Precipitation Distribution Derived From Three Spaceborne Radars and Its Contribution to the False Radiometer Precipitation Detection, Geophysical Research Letters, Volume 45 (2018) no. 9, p. 4446 | DOI:10.1029/2018gl077891
  • P. Ramesh Kumar Lightning, rainfall, AOD, and convection variabilities in the monsoon zone of India, International Journal of Remote Sensing, Volume 39 (2018) no. 3, p. 727 | DOI:10.1080/01431161.2017.1392636
  • Fayma Mushtaq; Mili Ghosh Nee Lala; Abhishek Anand Spatio-temporal variability of lightning activity over J K region and its relationship with topography, vegetation cover, and absorbing aerosol index (AAI), Journal of Atmospheric and Solar-Terrestrial Physics, Volume 179 (2018), p. 281 | DOI:10.1016/j.jastp.2018.08.011
  • Weixin Xu; Steven A. Rutledge Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region, Journal of Climate, Volume 31 (2018) no. 18, p. 7363 | DOI:10.1175/jcli-d-18-0091.1
  • Brody R. Fuchs; Steven A. Rutledge; Brenda Dolan; Lawrence D. Carey; Christopher Schultz Microphysical and Kinematic Processes Associated With Anomalous Charge Structures in Isolated Convection, Journal of Geophysical Research: Atmospheres, Volume 123 (2018) no. 12, p. 6505 | DOI:10.1029/2017jd027540
  • Dominic Royé; Nieves Lorenzo; Javier Martin-Vide Spatial–temporal patterns of cloud-to-ground lightning over the northwest Iberian Peninsula during the period 2010–2015, Natural Hazards, Volume 92 (2018) no. 2, p. 857 | DOI:10.1007/s11069-018-3228-9
  • Sanjay Kumar; Devendraa Siingh; R. P. Singh; A. K. Singh; A. K. Kamra Lightning Discharges, Cosmic Rays and Climate, Surveys in Geophysics, Volume 39 (2018) no. 5, p. 861 | DOI:10.1007/s10712-018-9469-z
  • C. E. Harman; R. Felton; R. Hu; S. D. Domagal-Goldman; A. Segura; F. Tian; J. F. Kasting Abiotic O2 Levels on Planets around F, G, K, and M Stars: Effects of Lightning-produced Catalysts in Eliminating Oxygen False Positives, The Astrophysical Journal, Volume 866 (2018) no. 1, p. 56 | DOI:10.3847/1538-4357/aadd9b
  • Themistoklis Chronis; William J. Koshak Diurnal Variation of TRMM/LIS Lightning Flash Radiances, Bulletin of the American Meteorological Society, Volume 98 (2017) no. 7, p. 1453 | DOI:10.1175/bams-d-16-0041.1
  • Orit Altaratz; Beata Kucienska; Alex Kostinski; Graciela B Raga; Ilan Koren Global association of aerosol with flash density of intense lightning, Environmental Research Letters, Volume 12 (2017) no. 11, p. 114037 | DOI:10.1088/1748-9326/aa922b
  • D. M. Chate; M. I. R. Tinmaker; M. Y. Aslam; Sachin D. Ghude Climate indicators for lightning over sea, sea–land mixed and land‐only surfaces in India, International Journal of Climatology, Volume 37 (2017) no. 4, p. 1672 | DOI:10.1002/joc.4802
  • Douglas C. Stolz; Steven A. Rutledge; Jeffrey R. Pierce; Susan C. van den Heever A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 14, p. 7461 | DOI:10.1002/2016jd026220
  • Angela Cheska Siongco; Cathy Hohenegger; Bjorn Stevens Sensitivity of the summertime tropical Atlantic precipitation distribution to convective parameterization and model resolution in ECHAM6, Journal of Geophysical Research: Atmospheres, Volume 122 (2017) no. 5, p. 2579 | DOI:10.1002/2016jd026093
  • Y. J. Wu; E. Williams; S. C. Chang; J. K. Chou; R. R. Hsu; M. Friedrich; C. L. Kuo; A. B. Chen; K. M. Peng; H. T. Su; H. U. Frey; S. B. Mende; Y. Takahashi; L. C. Lee The leading role of atomic oxygen in the collocation of elves and hydroxyl nightglow in the low‐latitude mesosphere, Journal of Geophysical Research: Space Physics, Volume 122 (2017) no. 5, p. 5550 | DOI:10.1002/2016ja023681
  • Reuven H. Heiblum; Ilan Koren; Orit Altaratz; Alexander B. Kostinski The Consistent Behavior of Tropical Rain: Average Reflectivity Vertical Profiles Determined by Rain Top Height, Journal of Hydrometeorology, Volume 18 (2017) no. 3, p. 591 | DOI:10.1175/jhm-d-16-0078.1
  • Douglas C. Stolz; Steven A. Rutledge; Weixin Xu; Jeffrey R. Pierce Interactions between the MJO, Aerosols, and Convection over the Central Indian Ocean, Journal of the Atmospheric Sciences, Volume 74 (2017) no. 2, p. 353 | DOI:10.1175/jas-d-16-0054.1
  • Baohua Chen; Chuntao Liu; Brian E. Mapes Relationships between Large Precipitating Systems and Atmospheric Factors at a Grid Scale, Journal of the Atmospheric Sciences, Volume 74 (2017) no. 2, p. 531 | DOI:10.1175/jas-d-16-0049.1
  • I. Gultepe; A. J. Heymsfield; P. R. Field; D. Axisa Ice-Phase Precipitation, Meteorological Monographs, Volume 58 (2017), p. 6.1 | DOI:10.1175/amsmonographs-d-16-0013.1
  • S. B Morwal; S. G Narkhedkar; B Padmakumari; R. S Maheskumar; C. G Deshpande; J. R Kulkarni Intra-seasonal and Inter-annual variability of Bowen Ratio over rain-shadow region of North peninsular India, Theoretical and Applied Climatology, Volume 128 (2017) no. 3-4, p. 835 | DOI:10.1007/s00704-016-1745-6
  • Alexandre O. Fierro Present State of Knowledge of Electrification and Lightning within Tropical Cyclones and Their Relationships to Microphysics and Storm Intensity, Advanced Numerical Modeling and Data Assimilation Techniques for Tropical Cyclone Prediction (2016), p. 197 | DOI:10.5822/978-94-024-0896-6_7
  • Dong Zheng; Yijun Zhang; Qing Meng; Luwen Chen; Jianru Dan Climatology of lightning activity in South China and its relationships to precipitation and convective available potential energy, Advances in Atmospheric Sciences, Volume 33 (2016) no. 3, p. 365 | DOI:10.1007/s00376-015-5124-5
  • Jayanti Pal; Sutapa Chaudhuri; Arumita Roy Chowdhury; Tanuka Bandyopadhyay Cloud — Aerosol interaction during lightning activity over land and ocean: Precipitation pattern assessment, Asia-Pacific Journal of Atmospheric Sciences, Volume 52 (2016) no. 3, p. 251 | DOI:10.1007/s13143-015-0087-0
  • Tamás Mona; Ákos Horváth; Ferenc Ács A thunderstorm cell-lightning activity analysis: The new concept of air mass catchment, Atmospheric Research, Volume 169 (2016), p. 340 | DOI:10.1016/j.atmosres.2015.10.017
  • S. Soula; J. Kigotsi Kasereka; J.F. Georgis; C. Barthe Lightning climatology in the Congo Basin, Atmospheric Research, Volume 178-179 (2016), p. 304 | DOI:10.1016/j.atmosres.2016.04.006
  • E. Proestakis; S. Kazadzis; K. Lagouvardos; V. Kotroni; V. Amiridis; E. Marinou; C. Price; A. Kazantzidis Aerosols and lightning activity: The effect of vertical profile and aerosol type, Atmospheric Research, Volume 182 (2016), p. 243 | DOI:10.1016/j.atmosres.2016.07.031
  • Rachel I. Albrecht; Steven J. Goodman; Dennis E. Buechler; Richard J. Blakeslee; Hugh J. Christian Where Are the Lightning Hotspots on Earth?, Bulletin of the American Meteorological Society, Volume 97 (2016) no. 11, p. 2051 | DOI:10.1175/bams-d-14-00193.1
  • S. B. Morwal; S. G. Narkhedkar; B. Padmakumari; R. S. Maheskumar; D. R. Kothawale; K. K. Dani; R. Burger; R. T. Bruintjes; J. R. Kulkarni Cloud characteristics over the rain-shadow region of North Central peninsular India during monsoon withdrawal and post-withdrawal periods, Climate Dynamics, Volume 46 (2016) no. 1-2, p. 495 | DOI:10.1007/s00382-015-2595-0
  • Dong Zheng; Yijun Zhang; Qing Meng; Luwen Chen; Jianru Dan Climatological Comparison of Small- and Large-Current Cloud-to-Ground Lightning Flashes over Southern China, Journal of Climate, Volume 29 (2016) no. 8, p. 2831 | DOI:10.1175/jcli-d-15-0386.1
  • Sarah D. Bang; Edward J. Zipser Seeking reasons for the differences in size spectra of electrified storms over land and ocean, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 15, p. 9048 | DOI:10.1002/2016jd025150
  • Levi D. Boggs; Ningyu Liu; Michael Splitt; Steven Lazarus; Chad Glenn; Hamid Rassoul; Steven A. Cummer An analysis of five negative sprite‐parent discharges and their associated thunderstorm charge structures, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 2, p. 759 | DOI:10.1002/2015jd024188
  • T. Chronis; W. Koshak; E. McCaul Why do oceanic negative cloud‐to‐ground lightning exhibit larger peak current values?, Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 8, p. 4049 | DOI:10.1002/2015jd024129
  • Vandoir Bourscheidt; Osmar Pinto; Kleber P. Naccarato The effects of Sao Paulo urban heat island on lightning activity: Decadal analysis (1999–2009), Journal of Geophysical Research: Atmospheres, Volume 121 (2016) no. 9, p. 4429 | DOI:10.1002/2016jd024782
  • Toshi Matsui; Jiun-Dar Chern; Wei-Kuo Tao; Stephen Lang; Masaki Satoh; Tempei Hashino; Takuji Kubota On the Land–Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models, Journal of Hydrometeorology, Volume 17 (2016) no. 5, p. 1425 | DOI:10.1175/jhm-d-15-0111.1
  • Philippe Lopez A Lightning Parameterization for the ECMWF Integrated Forecasting System, Monthly Weather Review, Volume 144 (2016) no. 9, p. 3057 | DOI:10.1175/mwr-d-16-0026.1
  • Daniel Rosenfeld; Youtong Zheng; Eyal Hashimshoni; Mira L. Pöhlker; Anne Jefferson; Christopher Pöhlker; Xing Yu; Yannian Zhu; Guihua Liu; Zhiguo Yue; Baruch Fischman; Zhanqing Li; David Giguzin; Tom Goren; Paulo Artaxo; Henrique M. J. Barbosa; Ulrich Pöschl; Meinrat O. Andreae Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 21, p. 5828 | DOI:10.1073/pnas.1514044113
  • Abram R. Jacobson; Robert H. Holzworth; Robert Pfaff; Roderick Heelis Automated identification of discrete, lightning‐generated, multiple‐dispersed whistler waves in C/NOFS‐VEFI very low frequency observations, Radio Science, Volume 51 (2016) no. 9, p. 1547 | DOI:10.1002/2016rs005989
  • Pengguo Zhao; Yan Yin; Hui Xiao The effects of aerosol on development of thunderstorm electrification: A numerical study, Atmospheric Research, Volume 153 (2015), p. 376 | DOI:10.1016/j.atmosres.2014.09.011
  • Z. Shi; Y.B. Tan; H.Q. Tang; J. Sun; Y. Yang; L. Peng; X.F. Guo Aerosol effect on the land-ocean contrast in thunderstorm electrification and lightning frequency, Atmospheric Research, Volume 164-165 (2015), p. 131 | DOI:10.1016/j.atmosres.2015.05.006
  • E. Galanaki; V. Kotroni; K. Lagouvardos; A. Argiriou A ten-year analysis of cloud-to-ground lightning activity over the Eastern Mediterranean region, Atmospheric Research, Volume 166 (2015), p. 213 | DOI:10.1016/j.atmosres.2015.07.008
  • Youtong Zheng; Daniel Rosenfeld Linear relation between convective cloud base height and updrafts and application to satellite retrievals, Geophysical Research Letters, Volume 42 (2015) no. 15, p. 6485 | DOI:10.1002/2015gl064809
  • Sarah D. Bang; Edward J. Zipser Differences in size spectra of electrified storms over land and ocean, Geophysical Research Letters, Volume 42 (2015) no. 16, p. 6844 | DOI:10.1002/2015gl065264
  • Zachary R. Hansen; Larissa E. Back Higher surface Bowen ratios ineffective at increasing updraft intensity, Geophysical Research Letters, Volume 42 (2015) no. 23 | DOI:10.1002/2015gl066878
  • Mark Smalley; Tristan L’Ecuyer A Global Assessment of the Spatial Distribution of Precipitation Occurrence, Journal of Applied Meteorology and Climatology, Volume 54 (2015) no. 11, p. 2179 | DOI:10.1175/jamc-d-15-0019.1
  • Devendraa Siingh; R.P. Singh; Sarvan Kumar; T. Dharmaraj; Abhay K. Singh; Ashok K. Singh; M.N. Patil; Shubha Singh Lightning and middle atmospheric discharges in the atmosphere, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 134 (2015), p. 78 | DOI:10.1016/j.jastp.2015.10.001
  • Douglas C. Stolz; Steven A. Rutledge; Jeffrey R. Pierce Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 12, p. 6207 | DOI:10.1002/2014jd023033
  • Brody R. Fuchs; Steven A. Rutledge; Eric C. Bruning; Jeffrey R. Pierce; John K. Kodros; Timothy J. Lang; Donald R. MacGorman; Paul R. Krehbiel; William Rison Environmental controls on storm intensity and charge structure in multiple regions of the continental United States, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 13, p. 6575 | DOI:10.1002/2015jd023271
  • Christina E. Liaskos; Dale J. Allen; Kenneth E. Pickering Sensitivity of tropical tropospheric composition to lightning NOx production as determined by replay simulations with GEOS‐5, Journal of Geophysical Research: Atmospheres, Volume 120 (2015) no. 16, p. 8512 | DOI:10.1002/2014jd022987
  • Fei Wang; Yijun Zhang; Dong Zheng Impact of updraft on neutralized charge rate by lightning in thunderstorms: A simulation case study, Journal of Meteorological Research, Volume 29 (2015) no. 6, p. 997 | DOI:10.1007/s13351-015-5023-9
  • Weixin Xu; Steven A. Rutledge; Courtney Schumacher; Masaki Katsumata Evolution, Properties, and Spatial Variability of MJO Convection near and off the Equator during DYNAMO, Journal of the Atmospheric Sciences, Volume 72 (2015) no. 11, p. 4126 | DOI:10.1175/jas-d-15-0032.1
  • Alexandre O. Fierro; Edward R. Mansell; Conrad L. Ziegler; Donald R. MacGorman Explicitly Simulated Electrification and Lightning within a Tropical Cyclone Based on the Environment of Hurricane Isaac (2012), Journal of the Atmospheric Sciences, Volume 72 (2015) no. 11, p. 4167 | DOI:10.1175/jas-d-14-0374.1
  • Marvin A. Geller; Tiehan Zhou; Peter T. Love Tropical Gravity Wave Momentum Fluxes and Latent Heating Distributions, Journal of the Atmospheric Sciences, Volume 72 (2015) no. 7, p. 2762 | DOI:10.1175/jas-d-15-0020.1
  • M. I. R. Tinmaker; M. Y. Aslam; D. M. Chate Lightning activity and its association with rainfall and convective available potential energy over Maharashtra, India, Natural Hazards, Volume 77 (2015) no. 1, p. 293 | DOI:10.1007/s11069-015-1589-x
  • Y. Ben Ami; O. Altaratz; Y. Yair; I. Koren Lightning characteristics over the eastern coast of the Mediterranean during different synoptic systems, Natural Hazards and Earth System Sciences, Volume 15 (2015) no. 11, p. 2449 | DOI:10.5194/nhess-15-2449-2015
  • Lunxiang Pan; Xiushu Qie; Dongfang Wang Lightning activity and its relation to the intensity of typhoons over the Northwest Pacific Ocean, Advances in Atmospheric Sciences, Volume 31 (2014) no. 3, p. 581 | DOI:10.1007/s00376-013-3115-y
  • Luiz A. T. Machado; Maria A. F. Silva Dias; Carlos Morales; Gilberto Fisch; Daniel Vila; Rachel Albrecht; Steven J. Goodman; Alan J. P. Calheiros; Thiago Biscaro; Christian Kummerow; Julia Cohen; David Fitzjarrald; Ernani L. Nascimento; Meiry S. Sakamoto; Christopher Cunningham; Jean-Pierre Chaboureau; Walter A. Petersen; David K. Adams; Luca Baldini; Carlos F. Angelis; Luiz F. Sapucci; Paola Salio; Henrique M. J. Barbosa; Eduardo Landulfo; Rodrigo A. F. Souza; Richard J. Blakeslee; Jeffrey Bailey; Saulo Freitas; Wagner F. A. Lima; Ali Tokay The Chuva Project: How Does Convection Vary across Brazil?, Bulletin of the American Meteorological Society, Volume 95 (2014) no. 9, p. 1365 | DOI:10.1175/bams-d-13-00084.1
  • Keren Mezuman; Colin Price; Eli Galanti On the spatial and temporal distribution of global thunderstorm cells, Environmental Research Letters, Volume 9 (2014) no. 12, p. 124023 | DOI:10.1088/1748-9326/9/12/124023
  • Weixin Xu; Robert F. Adler; Nai-Yu Wang Combining Satellite Infrared and Lightning Information to Estimate Warm‐Season Convective and Stratiform Rainfall, Journal of Applied Meteorology and Climatology, Volume 53 (2014) no. 1, p. 180 | DOI:10.1175/jamc-d-13-069.1
  • Zhuo Wang Characteristics of Convective Processes and Vertical Vorticity from the Tropical Wave to Tropical Cyclone Stage in a High-Resolution Numerical Model Simulation of Tropical Cyclone Fay (2008), Journal of the Atmospheric Sciences, Volume 71 (2014) no. 3, p. 896 | DOI:10.1175/jas-d-13-0256.1
  • Weixin Xu; Steven A. Rutledge Convective Characteristics of the Madden–Julian Oscillation over the Central Indian Ocean Observed by Shipborne Radar during DYNAMO, Journal of the Atmospheric Sciences, Volume 71 (2014) no. 8, p. 2859 | DOI:10.1175/jas-d-13-0372.1
  • Brad Reinhart; Henry Fuelberg; Richard Blakeslee; Douglas Mach; Andrew Heymsfield; Aaron Bansemer; Stephen L. Durden; Simone Tanelli; Gerald Heymsfield; Bjorn Lambrigtsen Understanding the Relationships between Lightning, Cloud Microphysics, and Airborne Radar-Derived Storm Structure during Hurricane Karl (2010), Monthly Weather Review, Volume 142 (2014) no. 2, p. 590 | DOI:10.1175/mwr-d-13-00008.1
  • S. Beirle; W. Koshak; R. Blakeslee; T. Wagner Global patterns of lightning properties derived by OTD and LIS, Natural Hazards and Earth System Sciences, Volume 14 (2014) no. 10, p. 2715 | DOI:10.5194/nhess-14-2715-2014
  • Nilton O. Rennó; Earle Williams; Daniel Rosenfeld; David G. Fischer; Jürgen Fischer; Tibor Kremic; Arun Agrawal; Meinrat O. Andreae; Rosina Bierbaum; Richard Blakeslee; Anko Boerner; Neil Bowles; Hugh Christian; Ann Cox; Jason Dunion; Akos Horvath; Xianglei Huang; Alexander Khain; Stefan Kinne; Maria C. Lemos; Joyce E. Penner; Ulrich Pöschl; Johannes Quaas; Elena Seran; Bjorn Stevens; Thomas Walati; Thomas Wagner CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate, Bulletin of the American Meteorological Society, Volume 94 (2013) no. 5, p. 685 | DOI:10.1175/bams-d-11-00239.1
  • Anirban Middey; Sutapa Chaudhuri The reciprocal relation between lightning and pollution and their impact over Kolkata, India, Environmental Science and Pollution Research, Volume 20 (2013) no. 5, p. 3133 | DOI:10.1007/s11356-012-1219-z
  • M. L. Hutchins; R. H. Holzworth; K. S. Virts; J. M. Wallace; S. Heckman Radiated VLF energy differences of land and oceanic lightning, Geophysical Research Letters, Volume 40 (2013) no. 10, p. 2390 | DOI:10.1002/grl.50406
  • Iqbal R. Tinmaker; Dilip M. Chate Lightning activity over India: a study of east–west contrast, International Journal of Remote Sensing, Volume 34 (2013) no. 16, p. 5641 | DOI:10.1080/01431161.2013.794987
  • Weixin Xu; Robert F. Adler; Nai-Yu Wang Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships, Journal of Applied Meteorology and Climatology, Volume 52 (2013) no. 1, p. 213 | DOI:10.1175/jamc-d-12-040.1
  • R. K. Penki; A. K. Kamra The lightning activity associated with the dry and moist convections in the Himalayan Regions, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 12, p. 6246 | DOI:10.1002/jgrd.50499
  • Agatha M. de Boer; Andrew B. Collier; Rodrigo Caballero Processes driving thunderstorms over the Agulhas Current, Journal of Geophysical Research: Atmospheres, Volume 118 (2013) no. 5, p. 2220 | DOI:10.1002/jgrd.50238
  • Edward R. Mansell; Conrad L. Ziegler Aerosol Effects on Simulated Storm Electrification and Precipitation in a Two-Moment Bulk Microphysics Model, Journal of the Atmospheric Sciences, Volume 70 (2013) no. 7, p. 2032 | DOI:10.1175/jas-d-12-0264.1
  • Weixin Xu Precipitation and Convective Characteristics of Summer Deep Convection over East Asia Observed by TRMM, Monthly Weather Review, Volume 141 (2013) no. 5, p. 1577 | DOI:10.1175/mwr-d-12-00177.1
  • S. E. Enno; A. Briede; D. Valiukas Climatology of thunderstorms in the Baltic countries, 1951–2000, Theoretical and Applied Climatology, Volume 111 (2013) no. 1-2, p. 309 | DOI:10.1007/s00704-012-0666-2
  • B. Kucienska; G. B. Raga; R. Romero-Centeno High lightning activity in maritime clouds near Mexico, Atmospheric Chemistry and Physics, Volume 12 (2012) no. 17, p. 8055 | DOI:10.5194/acp-12-8055-2012
  • D. Rosenfeld; E. Williams; M. O. Andreae; E. Freud; U. Pöschl; N. O. Rennó The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds, Atmospheric Measurement Techniques, Volume 5 (2012) no. 8, p. 2039 | DOI:10.5194/amt-5-2039-2012
  • P. Ramesh Kumar; A.K. Kamra Land–sea contrast in lightning activity over the sea and peninsular regions of South/Southeast Asia, Atmospheric Research, Volume 118 (2012), p. 52 | DOI:10.1016/j.atmosres.2012.05.027
  • P. Ramesh Kumar; A.K. Kamra Variability of lightning activity in South/Southeast Asia during 1997–98 and 2002–03 El Nino/La Nina events, Atmospheric Research, Volume 118 (2012), p. 84 | DOI:10.1016/j.atmosres.2012.06.004
  • M. M. Salut; M. Abdullah; K. L. Graf; M. B. Cohen; B. R. T. Cotts; Sushil Kumar Long recovery VLF perturbations associated with lightning discharges, Journal of Geophysical Research: Space Physics, Volume 117 (2012) no. A8 | DOI:10.1029/2012ja017567
  • Alexandre O. Fierro; Edward J. Zipser; Margaret A. LeMone; Jerry M. Straka; Joanne (Malkus) Simpson Tropical Oceanic Hot Towers: Need They Be Undilute to Transport Energy from the Boundary Layer to the Upper Troposphere Effectively? An Answer Based on Trajectory Analysis of a Simulation of a TOGA COARE Convective System, Journal of the Atmospheric Sciences, Volume 69 (2012) no. 1, p. 195 | DOI:10.1175/jas-d-11-0147.1
  • A. P. Khain; V. Phillips; N. Benmoshe; A. Pokrovsky The Role of Small Soluble Aerosols in the Microphysics of Deep Maritime Clouds, Journal of the Atmospheric Sciences, Volume 69 (2012) no. 9, p. 2787 | DOI:10.1175/2011jas3649.1
  • C. Bovalo; C. Barthe; N. Bègue A lightning climatology of the South-West Indian Ocean, Natural Hazards and Earth System Sciences, Volume 12 (2012) no. 8, p. 2659 | DOI:10.5194/nhess-12-2659-2012
  • Tianle Yuan; Lorraine A. Remer; Kenneth E. Pickering; Hongbin Yu Observational evidence of aerosol enhancement of lightning activity and convective invigoration, Geophysical Research Letters, Volume 38 (2011) no. 4, p. n/a | DOI:10.1029/2010gl046052
  • Daniel Rosenfeld; Thomas L. Bell Why do tornados and hailstorms rest on weekends?, Journal of Geophysical Research, Volume 116 (2011) no. D20 | DOI:10.1029/2011jd016214
  • A. H. Sobel; C. D. Burleyson; S. E. Yuter Rain on small tropical islands, Journal of Geophysical Research, Volume 116 (2011) no. D8 | DOI:10.1029/2010jd014695
  • A Várai; M Vincze; J Lichtenberger; I M Jánosi Search for possible relationship between volcanic ash particles and thunderstorm lightning activity, Journal of Physics: Conference Series, Volume 333 (2011), p. 012016 | DOI:10.1088/1742-6596/333/1/012016
  • F. J. Robinson; S. C. Sherwood; D. Gerstle; C. Liu; D. J. Kirshbaum Exploring the Land–Ocean Contrast in Convective Vigor Using Islands, Journal of the Atmospheric Sciences, Volume 68 (2011) no. 3, p. 602 | DOI:10.1175/2010jas3558.1
  • Devendraa Siingh; R. P. Singh; Ashok K. Singh; M. N. Kulkarni; A. S. Gautam; Abhay K. Singh Solar Activity, Lightning and Climate, Surveys in Geophysics, Volume 32 (2011) no. 6, p. 659 | DOI:10.1007/s10712-011-9127-1
  • Y.-A. Liou; S.K. Kar Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan, Atmospheric Research, Volume 95 (2010) no. 2-3, p. 115 | DOI:10.1016/j.atmosres.2009.08.016
  • Matthew W. Lewis; Suzanne L. Gray Categorisation of synoptic environments associated with mesoscale convective systems over the UK, Atmospheric Research, Volume 97 (2010) no. 1-2, p. 194 | DOI:10.1016/j.atmosres.2010.04.001
  • P. Ramesh Kumar; A.K. Kamra Lightning activity variations over three islands in a tropical monsoon region, Atmospheric Research, Volume 98 (2010) no. 2-4, p. 309 | DOI:10.1016/j.atmosres.2010.07.014
  • S. S. Kandalgaonkar; J. R. Kulkarni; M. I. R. Tinmaker; M. K. Kulkarni Land‐ocean contrasts in lightning activity over the Indian region, International Journal of Climatology, Volume 30 (2010) no. 1, p. 137 | DOI:10.1002/joc.1970
  • Eldo E. Ávila; Rodrigo E. Bürgesser; Nesvit E. Castellano; Andrew B. Collier; Rosa H. Compagnucci; Arthur R.W. Hughes Correlations between deep convection and lightning activity on a global scale, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 72 (2010) no. 14-15, p. 1114 | DOI:10.1016/j.jastp.2010.07.019
  • Chuntao Liu; Earle R. Williams; Edward J. Zipser; Gary Burns Diurnal Variations of Global Thunderstorms and Electrified Shower Clouds and Their Contribution to the Global Electrical Circuit, Journal of the Atmospheric Sciences, Volume 67 (2010) no. 2, p. 309 | DOI:10.1175/2009jas3248.1
  • Stephen D. Nicholls; Karen I. Mohr An Analysis of the Environments of Intense Convective Systems in West Africa in 2003, Monthly Weather Review, Volume 138 (2010) no. 10, p. 3721 | DOI:10.1175/2010mwr3321.1
  • Scott D. Rudlosky; Henry E. Fuelberg Pre- and Postupgrade Distributions of NLDN Reported Cloud-to-Ground Lightning Characteristics in the Contiguous United States, Monthly Weather Review, Volume 138 (2010) no. 9, p. 3623 | DOI:10.1175/2010mwr3283.1
  • S. Petrova; R. Mitzeva; V. Kotroni; J. Latham; E. Peneva Analyses of summer lightning activity and precipitation in the Central and Eastern Mediterranean, Atmospheric Research, Volume 91 (2009) no. 2-4, p. 453 | DOI:10.1016/j.atmosres.2008.06.013
  • D.M. Lal; S.D. Pawar Relationship between rainfall and lightning over central Indian region in monsoon and premonsoon seasons, Atmospheric Research, Volume 92 (2009) no. 4, p. 402 | DOI:10.1016/j.atmosres.2008.12.009
  • Satoru Yoshida; Takeshi Morimoto; Tomoo Ushio; ZenIchiro Kawasaki A fifth‐power relationship for lightning activity from Tropical Rainfall Measuring Mission satellite observations, Journal of Geophysical Research: Atmospheres, Volume 114 (2009) no. D9 | DOI:10.1029/2008jd010370
  • Alexandre O. Fierro; Joanne Simpson; Margaret A. LeMone; Jerry M. Straka; Bradley F. Smull On How Hot Towers Fuel the Hadley Cell: An Observational and Modeling Study of Line-Organized Convection in the Equatorial Trough from TOGA COARE, Journal of the Atmospheric Sciences, Volume 66 (2009) no. 9, p. 2730 | DOI:10.1175/2009jas3017.1
  • M.O. Andreae; D. Rosenfeld Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols, Earth-Science Reviews, Volume 89 (2008) no. 1-2, p. 13 | DOI:10.1016/j.earscirev.2008.03.001
  • Michael F. Donovan; Earle R. Williams; Cathy Kessinger; Gary Blackburn; Paul H. Herzegh; Richard L. Bankert; Steve Miller; Frederick R. Mosher The Identification and Verification of Hazardous Convective Cells over Oceans Using Visible and Infrared Satellite Observations, Journal of Applied Meteorology and Climatology, Volume 47 (2008) no. 1, p. 164 | DOI:10.1175/2007jamc1471.1
  • Vassiliki Kotroni; Kostas Lagouvardos Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean, Journal of Geophysical Research: Atmospheres, Volume 113 (2008) no. D21 | DOI:10.1029/2008jd010605
  • Yuriy Kuleshov; David Mackerras; Mat Darveniza Spatial Distribution and Frequency of Thunderstorms and Lightning in Australia, Lightning: Principles, Instruments and Applications (2008), p. 187 | DOI:10.1007/978-1-4020-9079-0_8
  • Gabriella Sátori; Vadim Mushtak; Earle Williams Schumann Resonance Signatures of Global Lightning Activity, Lightning: Principles, Instruments and Applications (2008), p. 347 | DOI:10.1007/978-1-4020-9079-0_16
  • Serge Soula Lightning and Precipitation, Lightning: Principles, Instruments and Applications (2008), p. 447 | DOI:10.1007/978-1-4020-9079-0_20
  • Colin Price Thunderstorms, Lightning and Climate Change, Lightning: Principles, Instruments and Applications (2008), p. 521 | DOI:10.1007/978-1-4020-9079-0_24
  • Devendraa Siingh; A. K. Singh; R. P. Patel; Rajesh Singh; R. P. Singh; B. Veenadhari; Madhuparna Mukherjee Thunderstorms, Lightning, Sprites and Magnetospheric Whistler-Mode Radio Waves, Surveys in Geophysics, Volume 29 (2008) no. 6, p. 499 | DOI:10.1007/s10712-008-9053-z
  • U. Schumann; H. Huntrieser The global lightning-induced nitrogen oxides source, Atmospheric Chemistry and Physics, Volume 7 (2007) no. 14, p. 3823 | DOI:10.5194/acp-7-3823-2007
  • O. Pinto; I.R.C.A. Pinto; K.P. Naccarato Maximum cloud-to-ground lightning flash densities observed by lightning location systems in the tropical region: A review, Atmospheric Research, Volume 84 (2007) no. 3, p. 189 | DOI:10.1016/j.atmosres.2006.11.007
  • Anthony D. Del Genio; Mao‐Sung Yao; Jeffrey Jonas Will moist convection be stronger in a warmer climate?, Geophysical Research Letters, Volume 34 (2007) no. 16 | DOI:10.1029/2007gl030525
  • Daniel Rosenfeld Is Man Actively Changing the Environment, Measuring Precipitation From Space (2007), p. 7 | DOI:10.1007/978-1-4020-5835-6_2
  • Lawrence D. Carey; Kurt M. Buffalo Environmental Control of Cloud-to-Ground Lightning Polarity in Severe Storms, Monthly Weather Review, Volume 135 (2007) no. 4, p. 1327 | DOI:10.1175/mwr3361.1
  • Jasper Kirkby Cosmic Rays and Climate, Surveys in Geophysics, Volume 28 (2007) no. 5-6, p. 333 | DOI:10.1007/s10712-008-9030-6
  • E.R. Jayaratne; Y. Kuleshov Geographical and seasonal characteristics of the relationship between lightning ground flash density and rainfall within the continent of Australia, Atmospheric Research, Volume 79 (2006) no. 1, p. 1 | DOI:10.1016/j.atmosres.2005.03.004
  • R. Mitzeva; J. Latham; S. Petrova A comparative modeling study of the early electrical development of maritime and continental thunderstorms, Atmospheric Research, Volume 82 (2006) no. 1-2, p. 26 | DOI:10.1016/j.atmosres.2005.01.006
  • Regional Responses of Lightning Activities to Relative Humidity of the Surface, Chinese Journal of Geophysics, Volume 49 (2006) no. 2, p. 311 | DOI:10.1002/cjg2.840
  • Walter A. Petersen; Rong Fu; Mingxuan Chen; Richard Blakeslee Intraseasonal Forcing of Convection and Lightning Activity in the Southern Amazon as a Function of Cross-Equatorial Flow, Journal of Climate, Volume 19 (2006) no. 13, p. 3180 | DOI:10.1175/jcli3788.1
  • Yuriy Kuleshov; David Mackerras; Mat Darveniza Spatial distribution and frequency of lightning activity and lightning flash density maps for Australia, Journal of Geophysical Research: Atmospheres, Volume 111 (2006) no. D19 | DOI:10.1029/2005jd006982
  • Karen I. Mohr; Chris D. Thorncroft Intense convective systems in West Africa and their relationship to the African easterly jet, Quarterly Journal of the Royal Meteorological Society, Volume 132 (2006) no. 614, p. 163 | DOI:10.1256/qj.05.55
  • Colin Price GLOBAL THUNDERSTORM ACTIVITY, Sprites, Elves and Intense Lightning Discharges, Volume 225 (2006), p. 85 | DOI:10.1007/1-4020-4629-4_4
  • V.C. Mushtak; E.R. Williams; D.J. Boccippio Latitudinal variations of cloud base height and lightning parameters in the tropics, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 222 | DOI:10.1016/j.atmosres.2004.11.010
  • E.R. Williams Lightning and climate: A review, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 272 | DOI:10.1016/j.atmosres.2004.11.014
  • E. Williams; V. Mushtak; D. Rosenfeld; S. Goodman; D. Boccippio Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmospheric Research, Volume 76 (2005) no. 1-4, p. 288 | DOI:10.1016/j.atmosres.2004.11.009
  • Amy C. Clement; Brian Soden The Sensitivity of the Tropical-Mean Radiation Budget, Journal of Climate, Volume 18 (2005) no. 16, p. 3189 | DOI:10.1175/jcli3456.1
  • Eugene W. McCaul; Charles Cohen; Cody Kirkpatrick The Sensitivity of Simulated Storm Structure, Intensity, and Precipitation Efficiency to Environmental Temperature, Monthly Weather Review, Volume 133 (2005) no. 10, p. 3015 | DOI:10.1175/mwr3015.1
  • Daniel J. Cecil; Steven J. Goodman; Dennis J. Boccippio; Edward J. Zipser; Stephen W. Nesbitt Three Years of TRMM Precipitation Features. Part I: Radar, Radiometric, and Lightning Characteristics, Monthly Weather Review, Volume 133 (2005) no. 3, p. 543 | DOI:10.1175/mwr-2876.1
  • Spatial and Temporal Distribution of Lightning Activities on the Tibetan Plateau, Chinese Journal of Geophysics, Volume 47 (2004) no. 6, p. 1122 | DOI:10.1002/cjg2.596
  • Steven C. Sherwood; Jung‐Hyo Chae; Patrick Minnis; Matthew McGill Underestimation of deep convective cloud tops by thermal imagery, Geophysical Research Letters, Volume 31 (2004) no. 11 | DOI:10.1029/2004gl019699
  • Ralf Toumi; Xiushu Qie Seasonal variation of lightning on the Tibetan Plateau: A Spring anomaly?, Geophysical Research Letters, Volume 31 (2004) no. 4 | DOI:10.1029/2003gl018930
  • E.R Williams; G Sátori Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, Journal of Atmospheric and Solar-Terrestrial Physics, Volume 66 (2004) no. 13-14, p. 1213 | DOI:10.1016/j.jastp.2004.05.015
  • Earle Williams; Twiggy Chan; Dennis Boccippio Islands as miniature continents: Another look at the land‐ocean lightning contrast, Journal of Geophysical Research: Atmospheres, Volume 109 (2004) no. D16 | DOI:10.1029/2003jd003833
  • K. P. Naccarato; O. Pinto; I. R. C. A. Pinto Evidence of thermal and aerosol effects on the cloud‐to‐ground lightning density and polarity over large urban areas of Southeastern Brazil, Geophysical Research Letters, Volume 30 (2003) no. 13 | DOI:10.1029/2003gl017496
  • Xiushu Qie; Ralf Toumi; Tie Yuan Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor, Journal of Geophysical Research: Atmospheres, Volume 108 (2003) no. D17 | DOI:10.1029/2002jd003304

Cité par 245 documents. Sources : Crossref

Commentaires - Politique