The objective of this paper is to review our present understanding of the physical processes in lightning flashes during their development within or outside a cloud, following lightning initiation. This represents the ‘big picture’ of lightning development, in the scale of the cloud dimensions themselves. Since the acceptance of the bi-directional, zero-net-charge leader concept, significant changes have occurred in our understanding of the key physical processes of which a lightning flash is comprised, and in the analytical relationship between the electrical structure of a cloud and lightning parameters. These changes are discussed with an emphasis on the unifying nature of the bi-directional leader concept.
Cet article présente les connaissances actuelles des processus physiques régissant le développement de l'éclair à l'intérieur ou à l'extérieur du nuage, après la phase d'initiation. Il s'agit de proposer une vision d'ensemble du processus, à l'échelle du nuage lui-même. Depuis que le concept de leader bi-directionnel non chargé est complètement admis, notre compréhension des principaux mécanismes de l'éclair a évolué de façon significative et il est possible d'appréhender de façon analytique les relations entre la structure électrique du nuage d'orage et les paramètres caractéristiques de l'éclair. Ces nouvelles approches sont discutées en insistant sur le caractère unificateur du concept de leader bi-directionnel.
Vladislav Mazur 1
@article{CRPHYS_2002__3_10_1393_0, author = {Vladislav Mazur}, title = {Physical processes during development of lightning flashes}, journal = {Comptes Rendus. Physique}, pages = {1393--1409}, publisher = {Elsevier}, volume = {3}, number = {10}, year = {2002}, doi = {10.1016/S1631-0705(02)01412-3}, language = {en}, }
Vladislav Mazur. Physical processes during development of lightning flashes. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1393-1409. doi : 10.1016/S1631-0705(02)01412-3. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01412-3/
[1] Qualitative Ubersicht uber Potential-, Feld- und Ladungsverhaltnisse bei einer Blitzentladung in der Gewitterwolke (Qualitative Survey of the Potential, Field and Charge Conditions during a Lightning discharge in the Thunderstorm Cloud) (H. Israel, ed.), Das Gewitter, Leipzig, Akadem. Verlagsgesellschaft, 1950
[2] H. Israel, Atmospheric Electricity, Vol. II (translated from German), published by the National Science Foundation, Washington, DC by the Israel Program for Scientific Translations, 1973
[3] Triggered Lightning strikes to aircraft and natural intracloud discharges, J. Geophys. Res, Volume 94 (1989), pp. 331-332
[4] The mechanism of the intracloud lightning discharge, J. Geophys. Res, Volume 69 (1964), pp. 514-519
[5] The cloud discharge (R.H. Golde, ed.), Lightning, Vol. 1, Physics of Lightning, Academic Press, New York, 1977, pp. 191-230
[6] The mechanism of discharges in a thunderstorm, Proc. Res. Inst. Atmos. Nagoya Univ, Volume 8B (1961), pp. 1-105
[7] VHF-UHF interferometric measurements, applications to lightning discharge mapping, Radio Sci, Volume 20 (1985), pp. 171-192
[8] Observations of lightning phenomena using radio interferometry, J. Geophys. Res, Volume 99 (1994), pp. 13059-13082
[9] A GPS-based three-dimensional lightning mapping system: Initial observations, Geophys. Res. Lett, Volume 26 (1999), pp. 3573-3576
[10] Analyse spatio-temporelle du rayonnement VHF-UHF associe a l'éclair, Rev. Phys. Appl, Volume 25 (1990), pp. 147-157
[11] RF radiation observations of positive cloud-to-ground flashes, J. Geophys. Res, Volume 104 (1999), pp. 9801-9808
[12] M. Stanley, Personal communications, 2002
[13] A comparison of intracloud and cloud-to-ground lightning discharges, J. Geophys. Res, Volume 65 (1960), pp. 1189-1201
[14] Z.-I. Kawasaki, Personal communication, 2002
[15] Common physical processes in natural and artificially triggered lightning, J. Geophys. Res, Volume 98 (1993), pp. 12913-12930
[16] Positive cloud-to-ground lightning observations, J. Geophys. Res, Volume 90 (1985), pp. 6131-6138
[17] R. Thomas, Personal communication, 2001
[18] R.J. Fisher, G.H. Schnetzer, 1993 triggered lightning test program, Sandia Report, SAND94-0311 UC-706, 1994
[19] An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res, Volume 84 (1979), pp. 2432-2456
[20] Model of electric charges in thunderstorms and associated lightning, J. Geophys. Res, Volume 103 (1998), pp. 23299-23308
[21] Spatial and temporal properties of optical radiation produced by stepped leaders, J. Geophys. Res, Volume 104 (1999), pp. 27573-27584
[22] “Spider” lightning in intracloud and positive cloud-to-ground flashes, J. Geophys. Res, Volume 103 (1998), pp. 19811-19822
[23] The electrical processes in the intervals between the strokes of a lightning discharge, Proc. Roy. Soc. London Ser. A, Volume 206 (1951), pp. 145-163
[24] Common physical processes in natural and triggered lightning in winter storms in Japan, J. Geophys. Res, Volume 97 (1992), pp. 12935-12945
[25] Spark Discharge, CRC Press, New York, 1998
[26] S. Heckman, Ph.D. thesis, Massachusetts Institute of Technology, 1992
[27] The mechanism of long spark formation, J. Phys. C, Volume 40 (1979), pp. 193-250
[28] Is the bi-leader progression concept true?, Proc. 10th Internat. Conf. Atmospheric Electricity, Osaka, Japan, 1996, pp. 596-598
[29] The electrical structure of the Hokuriku winter thunderstorms, J. Geophys. Res, Volume 87 (1982), pp. 1207-1215
[30] The Lightning Discharge, Academic Press, New York, 1987
[31] Correlated high-speed video and radio interferometric observations of a cloud-to-ground lightning flash, J. Geophys. Res, Volume 100 (1995), pp. 25731-25753
Cited by Sources:
Comments - Policy