Comptes Rendus
Mécanismes physiques du nuage d'orage et de l'éclair/The physics of thundercloud and lightning discharge
Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes
Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1411-1421.

A fascinating set of newly discovered complex phenomena indicate that thunderstorms and lightning discharges are strongly coupled to the overlying upper atmospheric regions. Lightning discharges at cloud altitudes (<20 km) affect altitudes >40 km either via the release of intense electromagnetic pulses (EMPs) and/or the production of intense quasi-static electric (QE) fields. The intense transient QE fields of up to ∼1 kV·m−1, which for positive CG discharges is directed downwards, can avalanche accelerate upward-driven runaway MeV electron beams, producing brief (∼1 ms) flashes of gamma radiation. A spectacular manifestation of these intense fields is the so-called ‘Sprites’, large luminous discharges in the altitude range of ∼40 km to 90 km, which are produced by the heating of ambient electrons for a few to tens of milliseconds following intense lightning flashes. The so-called ‘Elves’ are optical flashes which last much shorter (<1 ms) than sprites, and are typically limited to 80–95 km altitudes with much larger (up to 600 km) lateral extent, being produced by the heating, ionization, and optical emissions due to the EMPs radiated by both positive and negative lightning discharges.

Un ensemble fascinant de phénomènes complexes étudiés lors de la dernière décennie indique que les orages troposphériques et les éclairs associés sont fortement couplés aux régions atmosphériques supérieures. Les éclairs formés à l'intérieur du nuage (à moins de 20 km d'altitude) ont des effets à plus de 40 km d'altitude via l'émission d'impulsions électromagnétiques intenses (EMP) et/ou la production de champs quasi-statiques (QE) élevés. Ces champs QE, dont l'amplitude atteint 1 kV/m, dirigés vers le bas pour des éclairs nuage-sol positifs, peuvent créer des avalanches d'électrons « runaway », d'énergie de l'ordre du MeV, accélérés vers la haute atmosphère, produisant des bouffées d'émission gamma de courte durée (environ 1 ms). Une manifestation spectaculaire de ces champs intenses est le phénomène de « Sprite », grande décharge lumineuse se développant entre 40 et 90 km, initiée par le chauffage d'électrons libres pendant quelques millisecondes suite à un éclair intense. Les phénomènes lumineux appelés « Elves », de durée beaucoup plus brève que les sprites (<1 ms), sont localisés entre 80 et 95 km d'altitude avec une extension latérale beaucoup plus grande (jusqu'à 600 km). Ils sont produits par les effets d'échauffement, d'ionisation et d'émission optique associés aux impulsions EMP rayonnés par les éclairs des deux polarités.

Published online:
DOI: 10.1016/S1631-0705(02)01418-4

Umran S. Inan 1

1 Space, Telecommunications and Radioscience (STAR) Laboratory, Stanford University, Stanford, CA 94305-9515, USA
@article{CRPHYS_2002__3_10_1411_0,
     author = {Umran S. Inan},
     title = {Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes},
     journal = {Comptes Rendus. Physique},
     pages = {1411--1421},
     publisher = {Elsevier},
     volume = {3},
     number = {10},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01418-4},
     language = {en},
}
TY  - JOUR
AU  - Umran S. Inan
TI  - Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 1411
EP  - 1421
VL  - 3
IS  - 10
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01418-4
LA  - en
ID  - CRPHYS_2002__3_10_1411_0
ER  - 
%0 Journal Article
%A Umran S. Inan
%T Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes
%J Comptes Rendus. Physique
%D 2002
%P 1411-1421
%V 3
%N 10
%I Elsevier
%R 10.1016/S1631-0705(02)01418-4
%G en
%F CRPHYS_2002__3_10_1411_0
Umran S. Inan. Lightning effects at high altitudes: sprites, elves, and terrestrial gamma ray flashes. Comptes Rendus. Physique, Volume 3 (2002) no. 10, pp. 1411-1421. doi : 10.1016/S1631-0705(02)01418-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01418-4/

[1] C.T.R. Wilson The electric field of a thundercloud and some of its effects, Proc. Phys. Soc. London, Volume 37 (1925), p. 32D

[2] R.C. Franz; R.J. Nemzek; J.R. Winckler Television image of a large upward discharge above a thunderstorm system, Science, Volume 249 (1990), p. 48

[3] D.D. Sentman; E.M. Wescott; D.L. Osborne; D.L. Hampton; M.J. Heavner Preliminary results from the Sprites94 campaign: Red Sprites, Geophys. Res. Lett., Volume 22 (1995), p. 1205

[4] O.H. Vaughan; B. Vonnegut Recent observations of lightning discharges from the top of a thunderstorm into the clear air above, J. Geophys. Res., Volume 94 (1989), p. 113179

[5] V.P. Pasko; U.S. Inan; T.F. Bell Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., Volume 102 (1997), p. 4529

[6] E.A. Gerken; U.S. Inan; C.P. Barrington-Leigh Telescopic imaging of sprites, Geophys. Res. Lett., Volume 27 (2000), p. 2637

[7] S.A. Cummer; U.S. Inan Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics, Geophys. Res. Lett., Volume 24 (1997), p. 1731

[8] S.A. Cummer; U.S. Inan; T.F. Bell; C.P. Barrington-Leigh ELF radiation produced by electrical currents in sprites, Geophys. Res. Lett., Volume 25 (1998), p. 1281

[9] W.L. Boeck; O.H. Vaughan; R. Blakeslee; B. Vonnegut; M. Brook Lightning induced brightening in the airglow layer, Geophys. Res. Lett., Volume 19 (1992), p. 99

[10] U.S. Inan; T.F. Bell; J.V. Rodriguez Heating and ionization of the lower ionosphere by lightning discharges, Geophys. Res. Lett., Volume 18 (1991), p. 705

[11] H. Fukunishi; Y. Takahashi; M. Kubota; K. Sakanoi; U.S. Inan; W.A. Lyons Lightning-induced transient luminous events in the lower ionosphere, Geophys. Res. Lett., Volume 23 (1996), p. 2157

[12] U.S. Inan; C. Barrington-Leigh; S. Hansen; V.S. Glukhov; T.F. Bell Rapid lateral expansion of optical luminosity in lightning-induced ionospheric flashes referred to as ‘Elves’, Geophys. Res. Lett., Volume 24 (1997), p. 583

[13] C.P. Barrington-Leigh; U.S. Inan; M. Stanley Identification of Sprites and Elves with intensified video and broadband array photometry, J. Geophys. Res., Volume 106 (2001) no. A2, p. 1741

[14] G.J. Fishman; P.N. Bhat; R. Malozzi; J.M. Horack; T. Koshut; C. Kouveliotou; G.N. Pendleton; C.A. Meegan; R.B. Wilson; W.S. Paciesas; S.J. Goodman; H.J. Christian Discovery of intense gamma-ray flashes of atmospheric origin, Science, Volume 264 (1994), p. 1313

[15] U.S. Inan; S.C. Reising; G.J. Fishman; J.M. Horack On the association of terrestrial gamma-ray bursts with lightning and implications for sprites, Geophys. Res. Lett., Volume 23 (1996), p. 1017

[16] N.G. Lehtinen; T.F. Bell; U.S. Inan Monte Carlo simulation of runaway MeV electron breakdown with application to Red Sprites and terrestrial gamma ray flashes, J. Geophys. Res., Volume 104 (1999), p. 24699

[17] N.G. Lehtinen; U.S. Inan; T.F. Bell Trapped energetic electron curtains produced by thunderstorm driven relativistic runaway electrons, Geophys. Res. Lett., Volume 27 (2000), p. 1095

[18] N.G. Lehtinen; U.S. Inan; T.F. Bell Effects of thunderstorm driven runaway electrons in the conjugate hemisphere: Purple sprites, ionization enhancements, and gamma rays, J. Geophys. Res., Volume 106 (2001) no. A12, p. 28841

[19] U.S. Inan; D.C. Shafer; W.Y. Yip; R.E. Orville Subionospheric VLF signatures of nighttime D-region perturbations in the vicinity of lightning discharges, J. Geophys. Res., Volume 93 (1988), p. 11455

Cited by Sources:

Comments - Policy