Comptes Rendus
Hydrodynamics and physics of soft objects/Hydrodynamique et physique des objets mous
Synthetic cell elements from block copolymers – hydrodynamic aspects
Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 251-258.

Amphiphilic block copolymers can self-assemble in water into various stable morphologies which resemble key cell structures, notably filaments and membranes. Filamentous ‘worms’ of copolymer, microns-long, are briefly introduced, and related dynamics of copolymer vesicle ‘polymersomes’ are reviewed. Fluorescence visualization of single worms stretched under flow demonstrates their stability as well as a means to control conformation. Polymersome membranes have been more thoroughly studied, especially copolymer molecular weight effects. We summarize results suggestive of a transition from Rouse-like behavior to entangled chains. Viewed together, the results ask the question: what physics are needed next to mimic cell activities such as crawling?

Les copolymères en bloc amphiphiles peuvent s'auto-assembler dans l'eau selon différentes morphologies, ressemblant à des éléments structuraux clefs de la cellule, notamment les filaments et les membranes. Les « vers » (worms) filamenteux, de la taille du micron, seront brièvement évoqués, puis nous résumerons les propriétés dynamiques des vésicules de copolymers (polymersomes). La visualisation à l'aide de la microscopie à fluorescence de vers seuls, étirés dans un flux, démontre d'une part, leur stabilité et d'autre part, présente un moyen de contrôler leur conformation. Les membranes des polymersomes ont été étudiées en détail, et plus particulièrement les effets de la masse moléculaire du copolymère. Au final, nous résumerons plusieurs résultats qui suggèrent une transition d'un comportement de « rouse-like » à une chaı̂ne enchevêtrée. Une vue d'ensemble des résultats permet de poser une question à savoir quelle est la physique nécessaire pour imiter des activités de la cellule tel que le « rampement » (cell crawling).

Publié le :
DOI : 10.1016/S1631-0705(03)00028-8
Keywords: Vesicles, Worm micelles, Block copolymer, Polymersome
Keywords: Vésicules, Worm micelles, Bloc copolymère, Polymersome

Paul Dalhaimer 1 ; Frank S. Bates 2 ; Helim Aranda-Espinoza 1 ; Dennis Discher 1

1 Biophysical Engineering Lab, 112 Towne Bldg., University of Pennsylvania, Philadelphia, PA 19104-6315, USA
2 Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN 55455, USA
@article{CRPHYS_2003__4_2_251_0,
     author = {Paul Dalhaimer and Frank S. Bates and Helim Aranda-Espinoza and Dennis Discher},
     title = {Synthetic cell elements from block copolymers {\textendash} hydrodynamic aspects},
     journal = {Comptes Rendus. Physique},
     pages = {251--258},
     publisher = {Elsevier},
     volume = {4},
     number = {2},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00028-8},
     language = {en},
}
TY  - JOUR
AU  - Paul Dalhaimer
AU  - Frank S. Bates
AU  - Helim Aranda-Espinoza
AU  - Dennis Discher
TI  - Synthetic cell elements from block copolymers – hydrodynamic aspects
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 251
EP  - 258
VL  - 4
IS  - 2
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00028-8
LA  - en
ID  - CRPHYS_2003__4_2_251_0
ER  - 
%0 Journal Article
%A Paul Dalhaimer
%A Frank S. Bates
%A Helim Aranda-Espinoza
%A Dennis Discher
%T Synthetic cell elements from block copolymers – hydrodynamic aspects
%J Comptes Rendus. Physique
%D 2003
%P 251-258
%V 4
%N 2
%I Elsevier
%R 10.1016/S1631-0705(03)00028-8
%G en
%F CRPHYS_2003__4_2_251_0
Paul Dalhaimer; Frank S. Bates; Helim Aranda-Espinoza; Dennis Discher. Synthetic cell elements from block copolymers – hydrodynamic aspects. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 251-258. doi : 10.1016/S1631-0705(03)00028-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00028-8/

[1] F.S. Bates; G.H. Fredrickson Phys. Today, 52 (1999), p. 32

[2] B.M. Discher; Y.-Y. Won; D.S. Ege; J.C.-M. Lee; F.S. Bates; D.E. Discher; D.A. Hammer Science, 284 (2000), pp. 1143-1146

[3] E.M. Purcell Am. J. Phys., 45 (1977) no. 1, pp. 3-11

[4] E. Evans Biophys. J., 64 (1993), pp. 1306-1322

[5] A. Mogilner; G. Oster Biophys. J., 71 (1996), pp. 3030-3045

[6] A.D. Bangham Chem. Phys. Lipids, 64 (1993), p. 275

[7] B. Cornet; E. Decroly; D. Thines-Sempoux; J.M. Ruysschaert; M. Vandenbranden AIDS Res. Hum. Retroviruses, 8 (1992), p. 1823

[8] D.K. Fygenson; J.F. Marko; A. Libchaber Phys. Rev. Lett., 79 (1997), pp. 4497-4500

[9] R.R. Netz; M. Schick Phys. Rev. E, 53 (1996), pp. 3875-3885

[10] A. Halperin; M. Tirrell; T. Lodge Adv. Polym. Sci., 100 (1992), pp. 31-71

[11] H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability, Macromolecules, to appear

[12] Structure and Dynamics of Membranes – From Cells to Vesicles (R. Lipowsky; E. Sackmann, eds.), Elsevier, Amsterdam, 1995

[13] H. Aranda-Espinoza; H. Bermudez; F.S. Bates; D.E. Discher Phys. Rev. Lett., 87 (2001), p. 208301

[14] R. Hirn; T.M. Bayer; J.O. Radler; E. Sackmann Faraday Discuss., 111 (1998), pp. 17-30

[15] F. Brochard; J.F. Lennon J. Phys. (Paris), 36 (1975) no. 11, pp. 1035-1047

[16] J.F. Marko Europhys. Lett., 38 (1997), pp. 183-188

[17] F. Brochard-Wyard Europhys. Lett., 23 (1993), pp. 105-111

[18] P. Dalhaimer, F.S. Bates, D.E. Discher, Single molecule studies of stiffness-tunable worm micelles, in preparation

[19] Y.Y. Won; K. Paso; H.T. Davis; F.S. Bates J. Phys. Chem. B, 105 (2001), pp. 8302-8311

[20] Y.Y. Won; H.T. Davis; F.S. Bates Giant wormlike rubber micelles, Science, Volume 283 (1999), pp. 960-963

[21] B.M. Discher; H. Bermudez; D.A. Hammer; D.E. Discher; Y.-Y. Won; F.S. Bates J. Phys. Chem. B, 106 (2002), pp. 2848-2854

[22] E. Evans; R. Skalak Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL, 1980

[23] J.C.-M. Lee; M. Santore; F.S. Bates; D.E. Discher Macromolecules, 35 (2002), pp. 323-326

[24] T.P. Lodge; M.C. Dalvi Phys. Rev. Lett., 75 (1995) no. 4, pp. 657-660

[25] D. Needham; R.M. Hochmuth Biophys. J., 55 (1989), pp. 1001-1009

[26] J.M. Crowley Biophys. J., 13 (1973), pp. 711-724

[27] O. Sandre; L. Moreaux; F. Brochard-Wyart Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 10591-10596

[28] H. Bermudez, H. Arand-Espinoza, D.A. Hammer, D.E. Discher, submitted

[29] R. Dimova; U. Seifert; B. Pouligny; S. Forster; H.-G. Dobereiner Eur. Phys. J. E, 7 (2002), pp. 241-250

[30] K. Velonia; A.E. Rowan; R.J.M. Nolte J. Am. Chem. Soc., 124 (2002), p. 4224

  • Imran Khan; Momin Khan; Muhammad Naveed Umar; Deog‐Hwan Oh Nanobiotechnology and its applications in drug delivery system: a review, IET Nanobiotechnology, Volume 9 (2015) no. 6, p. 396 | DOI:10.1049/iet-nbt.2014.0062
  • Fabian Itel; Mohamed Chami; Adrian Najer; Samuel Lörcher; Dalin Wu; Ionel A. Dinu; Wolfgang Meier Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study, Macromolecules, Volume 47 (2014) no. 21, p. 7588 | DOI:10.1021/ma5015403
  • Farzad Lahooti‐Fard; Mohammad Imani; Ali Akbar Yousefi; Maryam Babaie Formation of liquid‐crystalline morphologies in dilute solutions of a charged random terpolymer, Polymer International, Volume 63 (2014) no. 9, p. 1627 | DOI:10.1002/pi.4673
  • Pascal Tanner; Patric Baumann; Ramona Enea; Ozana Onaca; Cornelia Palivan; Wolfgang Meier Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles, Accounts of Chemical Research, Volume 44 (2011) no. 10, p. 1039 | DOI:10.1021/ar200036k
  • Pascal Tanner; Stefan Egli; Vimalkumar Balasubramanian; Ozana Onaca; Cornelia G. Palivan; Wolfgang Meier Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?, FEBS Letters, Volume 585 (2011) no. 11, p. 1699 | DOI:10.1016/j.febslet.2011.05.003
  • Giuseppe Battaglia Polymersomes and Their Biomedical Applications, Nanotechnologies for the Life Sciences (2011) | DOI:10.1002/9783527610419.ntls0250
  • Caterina LoPresti; Hannah Lomas; Marzia Massignani; Thomas Smart; Giuseppe Battaglia Polymersomes: nature inspired nanometer sized compartments, Journal of Materials Chemistry, Volume 19 (2009) no. 22, p. 3576 | DOI:10.1039/b818869f
  • Violeta Malinova; Serena Belegrinou; Dirk de Bruyn Ouboter; Wolfgang Peter Meier Biomimetic Block Copolymer Membranes, Polymer Membranes/Biomembranes, Volume 224 (2009), p. 87 | DOI:10.1007/978-3-642-10479-4_10
  • Gina L. Fiore; Cassandra L. Fraser Iron-Centered Star Polymers with Pentablock Bipyridine-Centered PEG-PCL-PLA Macroligands, Macromolecules, Volume 41 (2008) no. 21, p. 7892 | DOI:10.1021/ma801353b
  • Xifei Yu; Tongfei Shi; Lijia An; Guo Zhang; P. K. Dutta Synthesis of a ‐shaped amphiphilic block copolymer by the combination of atom transfer radical polymerization and living anionic polymerization, Journal of Polymer Science Part A: Polymer Chemistry, Volume 45 (2007) no. 1, p. 147 | DOI:10.1002/pola.21814
  • Damon Sutton; Norased Nasongkla; Elvin Blanco; Jinming Gao Functionalized Micellar Systems for Cancer Targeted Drug Delivery, Pharmaceutical Research, Volume 24 (2007) no. 6, p. 1029 | DOI:10.1007/s11095-006-9223-y
  • Alessandro Napoli; Diana Sebök; Alex Senti; Wolfgang Meier Block Copolymer Vesicles, Block Copolymers in Nanoscience (2006), p. 39 | DOI:10.1002/9783527610570.ch3
  • Fariyal Ahmed; Peter J. Photos; Dennis E. Discher Polymersomes as viral capsid mimics, Drug Development Research, Volume 67 (2006) no. 1, p. 4 | DOI:10.1002/ddr.20062
  • Almut Mecke; Christian Dittrich; Wolfgang Meier Biomimetic membranes designed from amphiphilic block copolymers, Soft Matter, Volume 2 (2006) no. 9, p. 751 | DOI:10.1039/b605165k
  • Applications, Block Copolymers in Solution: Fundamentals and Applications (2005), p. 241 | DOI:10.1002/9780470016985.ch6
  • Neutral Block Copolymers in Dilute Solution, Block Copolymers in Solution: Fundamentals and Applications (2005), p. 7 | DOI:10.1002/9780470016985.ch2
  • Stephan Förster; Kwe Borchert Polymer Vesicles, Encyclopedia of Polymer Science and Technology (2005) | DOI:10.1002/0471440264.pst517
  • Cristiano Giacomelli; Gabriel Lafitte; Redouane Borsali Polycaprolactone‐b‐Poly(ethylene oxide) Biocompatible Micelles as Drug Delivery Nanocarriers: Dynamic Light Scattering and Fluorescence Experiments, Macromolecular Symposia, Volume 229 (2005) no. 1, p. 107 | DOI:10.1002/masy.200551113
  • Katarzyna Kita-Tokarczyk; Julie Grumelard; Thomas Haefele; Wolfgang Meier Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes, Polymer, Volume 46 (2005) no. 11, p. 3540 | DOI:10.1016/j.polymer.2005.02.083
  • I. W. Hamley Nanoshells and nanotubes from block copolymers, Soft Matter, Volume 1 (2005) no. 1, p. 36 | DOI:10.1039/b418226j
  • Dennis E. Discher Biomimetic Nanostructures, Introduction to Nanoscale Science and Technology (2004), p. 533 | DOI:10.1007/1-4020-7757-2_22
  • Fariyal Ahmed; Dennis E Discher Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles, Journal of Controlled Release, Volume 96 (2004) no. 1, p. 37 | DOI:10.1016/j.jconrel.2003.12.021

Cité par 22 documents. Sources : Crossref

Commentaires - Politique