Amphiphilic block copolymers can self-assemble in water into various stable morphologies which resemble key cell structures, notably filaments and membranes. Filamentous ‘worms’ of copolymer, microns-long, are briefly introduced, and related dynamics of copolymer vesicle ‘polymersomes’ are reviewed. Fluorescence visualization of single worms stretched under flow demonstrates their stability as well as a means to control conformation. Polymersome membranes have been more thoroughly studied, especially copolymer molecular weight effects. We summarize results suggestive of a transition from Rouse-like behavior to entangled chains. Viewed together, the results ask the question: what physics are needed next to mimic cell activities such as crawling?
Les copolymères en bloc amphiphiles peuvent s'auto-assembler dans l'eau selon différentes morphologies, ressemblant à des éléments structuraux clefs de la cellule, notamment les filaments et les membranes. Les « vers » (worms) filamenteux, de la taille du micron, seront brièvement évoqués, puis nous résumerons les propriétés dynamiques des vésicules de copolymers (polymersomes). La visualisation à l'aide de la microscopie à fluorescence de vers seuls, étirés dans un flux, démontre d'une part, leur stabilité et d'autre part, présente un moyen de contrôler leur conformation. Les membranes des polymersomes ont été étudiées en détail, et plus particulièrement les effets de la masse moléculaire du copolymère. Au final, nous résumerons plusieurs résultats qui suggèrent une transition d'un comportement de « rouse-like » à une chaı̂ne enchevêtrée. Une vue d'ensemble des résultats permet de poser une question à savoir quelle est la physique nécessaire pour imiter des activités de la cellule tel que le « rampement » (cell crawling).
Keywords: Vésicules, Worm micelles, Bloc copolymère, Polymersome
Paul Dalhaimer 1 ; Frank S. Bates 2 ; Helim Aranda-Espinoza 1 ; Dennis Discher 1
@article{CRPHYS_2003__4_2_251_0, author = {Paul Dalhaimer and Frank S. Bates and Helim Aranda-Espinoza and Dennis Discher}, title = {Synthetic cell elements from block copolymers {\textendash} hydrodynamic aspects}, journal = {Comptes Rendus. Physique}, pages = {251--258}, publisher = {Elsevier}, volume = {4}, number = {2}, year = {2003}, doi = {10.1016/S1631-0705(03)00028-8}, language = {en}, }
TY - JOUR AU - Paul Dalhaimer AU - Frank S. Bates AU - Helim Aranda-Espinoza AU - Dennis Discher TI - Synthetic cell elements from block copolymers – hydrodynamic aspects JO - Comptes Rendus. Physique PY - 2003 SP - 251 EP - 258 VL - 4 IS - 2 PB - Elsevier DO - 10.1016/S1631-0705(03)00028-8 LA - en ID - CRPHYS_2003__4_2_251_0 ER -
%0 Journal Article %A Paul Dalhaimer %A Frank S. Bates %A Helim Aranda-Espinoza %A Dennis Discher %T Synthetic cell elements from block copolymers – hydrodynamic aspects %J Comptes Rendus. Physique %D 2003 %P 251-258 %V 4 %N 2 %I Elsevier %R 10.1016/S1631-0705(03)00028-8 %G en %F CRPHYS_2003__4_2_251_0
Paul Dalhaimer; Frank S. Bates; Helim Aranda-Espinoza; Dennis Discher. Synthetic cell elements from block copolymers – hydrodynamic aspects. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 251-258. doi : 10.1016/S1631-0705(03)00028-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00028-8/
[1] Phys. Today, 52 (1999), p. 32
[2] Science, 284 (2000), pp. 1143-1146
[3] Am. J. Phys., 45 (1977) no. 1, pp. 3-11
[4] Biophys. J., 64 (1993), pp. 1306-1322
[5] Biophys. J., 71 (1996), pp. 3030-3045
[6] Chem. Phys. Lipids, 64 (1993), p. 275
[7] AIDS Res. Hum. Retroviruses, 8 (1992), p. 1823
[8] Phys. Rev. Lett., 79 (1997), pp. 4497-4500
[9] Phys. Rev. E, 53 (1996), pp. 3875-3885
[10] Adv. Polym. Sci., 100 (1992), pp. 31-71
[11] H. Bermudez, A.K. Brannan, D.A. Hammer, F.S. Bates, D.E. Discher, Molecular weight dependence of polymersome membrane structure, elasticity, and stability, Macromolecules, to appear
[12] Structure and Dynamics of Membranes – From Cells to Vesicles (R. Lipowsky; E. Sackmann, eds.), Elsevier, Amsterdam, 1995
[13] Phys. Rev. Lett., 87 (2001), p. 208301
[14] Faraday Discuss., 111 (1998), pp. 17-30
[15] J. Phys. (Paris), 36 (1975) no. 11, pp. 1035-1047
[16] Europhys. Lett., 38 (1997), pp. 183-188
[17] Europhys. Lett., 23 (1993), pp. 105-111
[18] P. Dalhaimer, F.S. Bates, D.E. Discher, Single molecule studies of stiffness-tunable worm micelles, in preparation
[19] J. Phys. Chem. B, 105 (2001), pp. 8302-8311
[20] Giant wormlike rubber micelles, Science, Volume 283 (1999), pp. 960-963
[21] J. Phys. Chem. B, 106 (2002), pp. 2848-2854
[22] Mechanics and Thermodynamics of Biomembranes, CRC Press, Boca Raton, FL, 1980
[23] Macromolecules, 35 (2002), pp. 323-326
[24] Phys. Rev. Lett., 75 (1995) no. 4, pp. 657-660
[25] Biophys. J., 55 (1989), pp. 1001-1009
[26] Biophys. J., 13 (1973), pp. 711-724
[27] Proc. Nat. Acad. Sci. USA, 96 (1999), pp. 10591-10596
[28] H. Bermudez, H. Arand-Espinoza, D.A. Hammer, D.E. Discher, submitted
[29] Eur. Phys. J. E, 7 (2002), pp. 241-250
[30] J. Am. Chem. Soc., 124 (2002), p. 4224
- Nanobiotechnology and its applications in drug delivery system: a review, IET Nanobiotechnology, Volume 9 (2015) no. 6, p. 396 | DOI:10.1049/iet-nbt.2014.0062
- Molecular Organization and Dynamics in Polymersome Membranes: A Lateral Diffusion Study, Macromolecules, Volume 47 (2014) no. 21, p. 7588 | DOI:10.1021/ma5015403
- Formation of liquid‐crystalline morphologies in dilute solutions of a charged random terpolymer, Polymer International, Volume 63 (2014) no. 9, p. 1627 | DOI:10.1002/pi.4673
- Polymeric Vesicles: From Drug Carriers to Nanoreactors and Artificial Organelles, Accounts of Chemical Research, Volume 44 (2011) no. 10, p. 1039 | DOI:10.1021/ar200036k
- Can polymeric vesicles that confine enzymatic reactions act as simplified organelles?, FEBS Letters, Volume 585 (2011) no. 11, p. 1699 | DOI:10.1016/j.febslet.2011.05.003
- Polymersomes and Their Biomedical Applications, Nanotechnologies for the Life Sciences (2011) | DOI:10.1002/9783527610419.ntls0250
- Polymersomes: nature inspired nanometer sized compartments, Journal of Materials Chemistry, Volume 19 (2009) no. 22, p. 3576 | DOI:10.1039/b818869f
- Biomimetic Block Copolymer Membranes, Polymer Membranes/Biomembranes, Volume 224 (2009), p. 87 | DOI:10.1007/978-3-642-10479-4_10
- Iron-Centered Star Polymers with Pentablock Bipyridine-Centered PEG-PCL-PLA Macroligands, Macromolecules, Volume 41 (2008) no. 21, p. 7892 | DOI:10.1021/ma801353b
- Synthesis of a ‐shaped amphiphilic block copolymer by the combination of atom transfer radical polymerization and living anionic polymerization, Journal of Polymer Science Part A: Polymer Chemistry, Volume 45 (2007) no. 1, p. 147 | DOI:10.1002/pola.21814
- Functionalized Micellar Systems for Cancer Targeted Drug Delivery, Pharmaceutical Research, Volume 24 (2007) no. 6, p. 1029 | DOI:10.1007/s11095-006-9223-y
- Block Copolymer Vesicles, Block Copolymers in Nanoscience (2006), p. 39 | DOI:10.1002/9783527610570.ch3
- Polymersomes as viral capsid mimics, Drug Development Research, Volume 67 (2006) no. 1, p. 4 | DOI:10.1002/ddr.20062
- Biomimetic membranes designed from amphiphilic block copolymers, Soft Matter, Volume 2 (2006) no. 9, p. 751 | DOI:10.1039/b605165k
- Applications, Block Copolymers in Solution: Fundamentals and Applications (2005), p. 241 | DOI:10.1002/9780470016985.ch6
- Neutral Block Copolymers in Dilute Solution, Block Copolymers in Solution: Fundamentals and Applications (2005), p. 7 | DOI:10.1002/9780470016985.ch2
- Polymer Vesicles, Encyclopedia of Polymer Science and Technology (2005) | DOI:10.1002/0471440264.pst517
- Polycaprolactone‐b‐Poly(ethylene oxide) Biocompatible Micelles as Drug Delivery Nanocarriers: Dynamic Light Scattering and Fluorescence Experiments, Macromolecular Symposia, Volume 229 (2005) no. 1, p. 107 | DOI:10.1002/masy.200551113
- Block copolymer vesicles—using concepts from polymer chemistry to mimic biomembranes, Polymer, Volume 46 (2005) no. 11, p. 3540 | DOI:10.1016/j.polymer.2005.02.083
- Nanoshells and nanotubes from block copolymers, Soft Matter, Volume 1 (2005) no. 1, p. 36 | DOI:10.1039/b418226j
- Biomimetic Nanostructures, Introduction to Nanoscale Science and Technology (2004), p. 533 | DOI:10.1007/1-4020-7757-2_22
- Self-porating polymersomes of PEG–PLA and PEG–PCL: hydrolysis-triggered controlled release vesicles, Journal of Controlled Release, Volume 96 (2004) no. 1, p. 37 | DOI:10.1016/j.jconrel.2003.12.021
Cité par 22 documents. Sources : Crossref
Commentaires - Politique