[Signature en phase et en fréquence d'un laser à semi-conducteurs soumis à une injection optique]
Les principaux paramètres de contrôle d'un laser à semi-conducteurs soumis à une injection optique sont la fréquence et la puissance du signal injecté. Suivant leurs valeurs, divers comportements peuvent être observés : accrochage en phase, en fréquence, mélange multi-ondes, tirage en fréquence, hystérésis, chaos,... Nous montrons que la caractérisation spectrale du laser esclave (injecté) permet de mieux comprendre l'interaction non linéaire entre les deux sources en compétition : l'émission spontanée et le signal externe, dont les spectres sont amplifiés sans distinction par le milieu actif. Cette amplification est par conséquent fortement dépendante de la cohérence des sources. Nous décrivons le rôle du laser injecté comme celui d'un filtre et d'un amplificateur. Nous montrons alors que le laser peut-être utilisé pour traiter le signal d'entrée de manière pas encore totalement exploitée.
The main control parameters of a single mode semiconductor laser submitted to an injected external signal are the power and the frequency of the injected signal. Following their magnitude, many phenomena can be observed such as phase locking, frequency locking, frequency generation, push-pull effects, hysteresis phenomena and chaos,... We show here that the spectral signature of the slave laser enables a better understanding of the the nonlinear interaction between the two competing sources: the spontaneous emission and the external field for which spectra are equally amplified through the active medium. This amplification is then strongly dependent on their coherency. We describe the role of the injected laser as a filter and an amplifier. It follows that the laser can be used to process information in ways that are not yet completely exploited.
Accepté le :
Publié le :
Mots-clés : Injection optique, Largeur de raie, Laser à semi-conducteurs, Transfert spectral, Accrochage de phase, Accrochage de fréquence, Cohérence
Stéphane Blin 1 ; Céline Guignard 1 ; Pascal Besnard 1 ; Renaud Gabet 2 ; Guy Michel Stéphan 1 ; Marc Bondiou 3
@article{CRPHYS_2003__4_6_687_0, author = {St\'ephane Blin and C\'eline Guignard and Pascal Besnard and Renaud Gabet and Guy Michel St\'ephan and Marc Bondiou}, title = {Phase and spectral properties of optically injected semiconductor lasers}, journal = {Comptes Rendus. Physique}, pages = {687--699}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00083-5}, language = {en}, }
TY - JOUR AU - Stéphane Blin AU - Céline Guignard AU - Pascal Besnard AU - Renaud Gabet AU - Guy Michel Stéphan AU - Marc Bondiou TI - Phase and spectral properties of optically injected semiconductor lasers JO - Comptes Rendus. Physique PY - 2003 SP - 687 EP - 699 VL - 4 IS - 6 PB - Elsevier DO - 10.1016/S1631-0705(03)00083-5 LA - en ID - CRPHYS_2003__4_6_687_0 ER -
%0 Journal Article %A Stéphane Blin %A Céline Guignard %A Pascal Besnard %A Renaud Gabet %A Guy Michel Stéphan %A Marc Bondiou %T Phase and spectral properties of optically injected semiconductor lasers %J Comptes Rendus. Physique %D 2003 %P 687-699 %V 4 %N 6 %I Elsevier %R 10.1016/S1631-0705(03)00083-5 %G en %F CRPHYS_2003__4_6_687_0
Stéphane Blin; Céline Guignard; Pascal Besnard; Renaud Gabet; Guy Michel Stéphan; Marc Bondiou. Phase and spectral properties of optically injected semiconductor lasers. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 687-699. doi : 10.1016/S1631-0705(03)00083-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00083-5/
[1] Locking of laser oscillators by light injection, Appl. Phys. Lett., Volume 8 (1966), p. 91
[2] Injection locking properties of a semiconductor laser, IEEE J. Quant. Electron., Volume QE-18 (1982), p. 976
[3] Coexisting periodic attractors in injection-locked diode lasers, Quant. Semiclass. Opt., Volume 9 (1997), p. 785
[4] Nonlinear dynamics induced by optical injection in semiconductor lasers, Quant. Semiclass. Opt., Volume 9 (1997), p. 765
[5] Optical bistabilities in injected semiconductor lasers, Proceedings Laser '97, New Orleans, 1998
[6] Bistable output characteristics in semiconductor lasers injection locking, IEEE J. Quantum Electron., Volume QE-21 (1985), p. 1314
[7] Spectral properties of an injected laser, Phys. Rev. A, Volume 58 (1998), p. 2458
[8] Linewidth of an optically injected semiconductor laser, J. Opt. B (2000) no. 2, p. 41
[9] Spectral narrowing of dye laser output by injection of monochromatic radiation into the laser cavity, Appl. Phys. Lett., Volume 18 (1971), p. 10
[10] Contribution of spontaneous emission to the linewidth of an injection locked semiconductor laser, Electron. Lett., Volume 21 (1985), p. 183
[11] Stability of an injection-locked DFB 1.5 μ semiconductor laser, IEEE J. Quant. Electron., Volume QE-18 (1988), p. 148
[12] Theory of the linewidth of semiconductor lasers, IEEE J. Quant. Electron., Volume QE-18 (1982), p. 259
[13] Stability of an injection-locked DFB 1.5 m semiconductor laser, J. Phys. III France, Volume 2 (1992), pp. 1623-1644
[14] Period three limit-cycles in injected semiconductor lasers, J. Opt. B, Volume 4 (2002), p. 20
[15] A unifying view of bifurcations in a semiconductor laser subject to optical injection, Opt. Commun., Volume 172 (1999), p. 279
[16] Fast polarization switching with memory effect in a vertical cavity surface emitting laser subject to modulated optical injection, J. Appl. Phys., Volume 86 (1999), p. 4096
[17] Lasers, University Science Books, Mill Valley, CA, 1986
[18] Bifurcation transitions in an optically injected diode laser: theory and experiment, Opt. Commun., Volume 215 (2003), p. 125
[19] Laser Physics, Addison-Wesley, 1977
[20] Infrared and optical masers, Phys. Rev., Volume 112 (1958), p. 1940
[21] Laser with a transmitting window, Phys. Rev. A, Volume 5 (1972), p. 884
[22] Linewidth evolution in semiconductor lasers throughout threshold, Ann. Télécommun., Volume 49 (1994), p. 607
[23] Frequency and intensity noise in injection-locked semiconductor lasers: Theory and experiments, IEEE J. Quantum Electron., Volume QE-22 (1986), p. 427
[24] Semiclassical study of the laser transition, Phys. Rev. A, Volume 55 (1997), p. 1371
[25] M. Bondiou, Ph.D. Thesis, University of Rennes I, 1999
[26] R. Gabet, Ph.D. Thesis, University of Rennes I, 2001
[27] Amplification process in a laser injected by a narrow band, weak signal, Europhys. Lett., Volume 52 (2000), p. 60
[28] Applications of nonlinear fiber optics, Optics and Photonics, Academic Press, San Diego, 2001 (Section 4)
[29] Grating-tuned semiconductor MOPA lasers for precision spectroscopy, Proc. SPIE, Volume 24 (1999), p. 151
[30] Chaos synchronization and chaotic signal masking in semiconductor lasers with optical feedback, IEEE J. Quantum, Volume 38 (2002) no. 9, p. 1141
[31] Experimental demonstration of anticipating synchronization in chaotic semiconductor lasers with optical feedback, Phys. Rev. Lett., Volume 87 (2001), p. 154101
[32] Characterization of a chaotic telecommunication laser for different fiber cavity lengths, IEEE J. Quantum Electron., Volume 38 (2002), p. 1171
Cité par Sources :
Commentaires - Politique