[Lasers à cascade quantique : la technologie quantique des lasers à semiconducteurs dans le moyen et lointain infrarouge]
Le laser à cascade quantique est une nouvelle source de lumière cohérente exploitant l'effet tunnel résonant et les transitions optiques entre états quantifiés de la bande de conduction. Dans ces dispositifs semiconducteurs, les principes de fonctionnement sont basés sur l'ingénierie quantique des niveaux d'énergie électroniques et sur la mise en forme de leurs fonctions d'onde. Les performances de ces composants ont rapidement progressé ces dernières années et cette technologie représente désormais une solution de choix pour la fabrication de lasers dans le moyen et lointain infrarouge pour un très large domaine spectral (3–80 μm). Aujourd'hui, les lasers à cascade quantique peuvent fonctionner à température ambiante et peuvent fournir 200–300 mW de puissance moyenne (à 9 μm) avec un simple étage de refroidissement Peltier.
The quantum cascade laser is a new light source based on resonant tunnelling and optical transitions between quantised conduction band states. In these semiconductor devices the principles of operation arise from the quantum engineering of electronic energy levels and tailoring of their wavefunctions. In recent years the performance of these devices has improved markedly and this semiconductor technology is now an attractive choice for the fabrication of mid-far infrared lasers in a very wide spectral range (3–80 μm). At present, quantum cascade lasers are capable of continuous-wave room temperature operation and can deliver 200–300 mW of average power (at λ∼9 μm) operating on a Peltier cooler.
Accepté le :
Publié le :
Mots-clés : Laser semiconducteur, Laser à cascade quantique, Infrarouge moyen, Infrarouge lointain, Ingénierie quantique, Effet tunnel résonant, Temps de relaxation
Carlo Sirtori 1, 2 ; Julien Nagle 2
@article{CRPHYS_2003__4_6_639_0, author = {Carlo Sirtori and Julien Nagle}, title = {Quantum {Cascade} {Lasers:} the quantum technology for~semiconductor lasers in the mid-far-infrared}, journal = {Comptes Rendus. Physique}, pages = {639--648}, publisher = {Elsevier}, volume = {4}, number = {6}, year = {2003}, doi = {10.1016/S1631-0705(03)00110-5}, language = {en}, }
TY - JOUR AU - Carlo Sirtori AU - Julien Nagle TI - Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared JO - Comptes Rendus. Physique PY - 2003 SP - 639 EP - 648 VL - 4 IS - 6 PB - Elsevier DO - 10.1016/S1631-0705(03)00110-5 LA - en ID - CRPHYS_2003__4_6_639_0 ER -
Carlo Sirtori; Julien Nagle. Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 639-648. doi : 10.1016/S1631-0705(03)00110-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00110-5/
[1] Quantum cascade laser, Science, Volume 264 (1994), pp. 553-556
[2] Quantum cascade lasers, Phys. Today, Volume 55 (2002), pp. 34-44
[3] Quantum cascade lasers (F. Capasso; H.C. Liu, eds.), Intersubband Transitions in Quantum Wells: Physics and Applications II, Semiconductors and Semimetals, 66, Academic Press, New York, 2000, pp. 1-83
[4] GaAs/AlxGa1−xAs quantum cascade lasers, Appl. Phys. Lett., Volume 73 (1998), pp. 3486-3488
[5] Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a bound-to-continuum transition, Appl. Phys. Lett., Volume 81 (2002), pp. 4700-4702
[6] InAs/AlSb quantum-cascade light-emitting devices in the 3–5 μm wavelength region, Appl. Phys. Lett., Volume 78 (2001), pp. 1029-1031
[7] Terahertz semiconductor-heterostructure laser, Nature, Volume 417 (2002), pp. 156-159
[8] GaAs-based quantum cascade lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 505-522
[9] Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation, IEEE J. Quantum Electron., Volume 38 (2002), pp. 533-546
[10] Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Phys. Rev. B, Volume 40 (1989), pp. 1074-1085
[11] 300 K operation of a GaAs-based quantum-cascade laser at λ∼9 μm, Appl. Phys. Lett., Volume 78 (2001), pp. 3529-3531
[12] Resonant tunneling effect in quantum cascade lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 1722-1729
[13] GaAs/AlGaAs quantum cascade lasers: physics technology and prospects, IEEE J. Quantum Electron., Volume 38 (2002), pp. 547-558
[14] Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far infrared emission, IEEE J. Quantum Electron., Volume 38 (2002), pp. 511-532
[15] Bridge for the Terahertz gap, Nature, Volume 417 (2002), pp. 132-133
[16] Short wavelength (λ∼3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs, Appl. Phys. Lett., Volume 72 (1998), pp. 680-682
[17] High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm, Appl. Phys. Lett., Volume 78 (2001), pp. 396-398
[18] Continuous wave operation of a mid-infrared semiconductor laser at room temperature, Science, Volume 295 (2002), pp. 301-305
[19] Chemical sensors based on quantum cascade lasers, IEEE J. Quantum Electron., Volume 38 (2002), pp. 582-591
[20] Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities, Science, Volume 290 (2000), pp. 1739-1742
[21] Monolithic active mode locking of quantum cascade lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 169-171
[22] High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers, Appl. Phys. Lett., Volume 79 (2001), pp. 2526-2528
[23] Distributed feedback quantum cascade lasers, Appl. Phys. Lett., Volume 70 (1997), pp. 2670-2672
[24] Continuous-wave operation of distributed-feedback AlAs/GaAs superlattice quantum-cascade lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 3328-3330
[25] Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition, IEEE J. Quantum Electron., Volume 37 (2001), pp. 448-455
[26] Free-running frequency stability of mid-infrared quantum cascade lasers, Opt. Lett., Volume 27 (2002), pp. 170-172
[27] Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers, Electron. Lett., Volume 38 (2002), pp. 181-183
[28] High speed modulation and free space optical audio/video transmission using quantum cascade lasers, Electron. Lett., Volume 37 (2001), pp. 191-192
- Quantum Cascade Laser Based Chemical Sensing Using Optically Resonant Cavities, Cavity-Enhanced Spectroscopy and Sensing, Volume 179 (2014), p. 93 | DOI:10.1007/978-3-642-40003-2_3
- , Physics and Simulation of Optoelectronic Devices XXII, Volume 8980 (2014), p. 898014 | DOI:10.1117/12.2037745
- Quantum Cascade Lasers, Comprehensive Semiconductor Science and Technology (2011), p. 683 | DOI:10.1016/b978-0-44-453153-7.00014-6
- Theoretical investigation of infrared generation mechanism by quantum coherence in low-dimensional semiconductor heterostructures, Acta Physica Sinica, Volume 59 (2010) no. 9, p. 6185 | DOI:10.7498/aps.59.6185
- Quantum Cascade Laser Absorption Spectroscopy as a Plasma Diagnostic Tool: An Overview, Sensors, Volume 10 (2010) no. 7, p. 6861 | DOI:10.3390/s100706861
- Infrared detectors based on InGaAsN∕GaAs intersubband transitions, Applied Physics Letters, Volume 94 (2009) no. 2 | DOI:10.1063/1.3065479
- Intervalley Scattering and the Role of Indirect Band Gap AlAs Barriers: Application to GaAs/AlGaAs Quantum Cascade Lasers, Acta Physica Polonica A, Volume 113 (2008) no. 3, p. 891 | DOI:10.12693/aphyspola.113.891
- Comparison of a quantum cascade laser used in both cw and pulsed modes. Application to the study of SO2 lines around 9 μm, Applied Physics B, Volume 90 (2008) no. 2, p. 177 | DOI:10.1007/s00340-007-2857-6
- A continuous-wave difference-frequency generation laser operating in the mid-infrared (3–5μm) region for accurate line intensity measurements, Infrared Physics Technology, Volume 51 (2008) no. 4, p. 322 | DOI:10.1016/j.infrared.2007.11.001
- Energy levels and intersubband transitions inInGaAsN∕AlGaAsquantum wells, Physical Review B, Volume 75 (2007) no. 4 | DOI:10.1103/physrevb.75.045327
- Electrical Characterization of GaAs/AlGaAs Multi-Quantum Wells for Quantum Cascade Laser, Japanese Journal of Applied Physics, Volume 45 (2006) no. 6S, p. 5478 | DOI:10.1143/jjap.45.5478
- The formation of natural oxide on the mirrors of GaSb/GaInAsSb/GaAlAsSb laser heterostructures at places of emergence of al-rich layers, Semiconductors, Volume 40 (2006) no. 11, p. 1247 | DOI:10.1134/s1063782606110017
- New improvements in methane detection using a Helmholtz resonant photoacoustic laser sensor: A comparison between near-IR diode lasers and mid-IR quantum cascade lasers, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Volume 63 (2006) no. 5, p. 1021 | DOI:10.1016/j.saa.2005.11.002
- On-line hyphenation of quantum cascade laser and capillary electrophoresis, Journal of Chromatography A, Volume 1083 (2005) no. 1-2, p. 199 | DOI:10.1016/j.chroma.2005.06.044
Cité par 14 documents. Sources : Crossref
Commentaires - Politique