Comptes Rendus
Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared
[Lasers à cascade quantique : la technologie quantique des lasers à semiconducteurs dans le moyen et lointain infrarouge]
Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 639-648.

Le laser à cascade quantique est une nouvelle source de lumière cohérente exploitant l'effet tunnel résonant et les transitions optiques entre états quantifiés de la bande de conduction. Dans ces dispositifs semiconducteurs, les principes de fonctionnement sont basés sur l'ingénierie quantique des niveaux d'énergie électroniques et sur la mise en forme de leurs fonctions d'onde. Les performances de ces composants ont rapidement progressé ces dernières années et cette technologie représente désormais une solution de choix pour la fabrication de lasers dans le moyen et lointain infrarouge pour un très large domaine spectral (3–80 μm). Aujourd'hui, les lasers à cascade quantique peuvent fonctionner à température ambiante et peuvent fournir 200–300 mW de puissance moyenne (à 9 μm) avec un simple étage de refroidissement Peltier.

The quantum cascade laser is a new light source based on resonant tunnelling and optical transitions between quantised conduction band states. In these semiconductor devices the principles of operation arise from the quantum engineering of electronic energy levels and tailoring of their wavefunctions. In recent years the performance of these devices has improved markedly and this semiconductor technology is now an attractive choice for the fabrication of mid-far infrared lasers in a very wide spectral range (3–80 μm). At present, quantum cascade lasers are capable of continuous-wave room temperature operation and can deliver 200–300 mW of average power (at λ∼9 μm) operating on a Peltier cooler.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(03)00110-5
Keywords: Semiconductor laser, Quantum cascade laser, Mid-infrared, Far-infrared, Quantum engineering, Resonant tunneling, Relaxation time
Mots-clés : Laser semiconducteur, Laser à cascade quantique, Infrarouge moyen, Infrarouge lointain, Ingénierie quantique, Effet tunnel résonant, Temps de relaxation

Carlo Sirtori 1, 2 ; Julien Nagle 2

1 Matériaux et phénomènes quantique, Université Denis Diderot, Paris 7, 75251 Paris cedex 05, France
2 THALES research & technology, 91404 Orsay, France
@article{CRPHYS_2003__4_6_639_0,
     author = {Carlo Sirtori and Julien Nagle},
     title = {Quantum {Cascade} {Lasers:} the quantum technology for~semiconductor lasers in the mid-far-infrared},
     journal = {Comptes Rendus. Physique},
     pages = {639--648},
     publisher = {Elsevier},
     volume = {4},
     number = {6},
     year = {2003},
     doi = {10.1016/S1631-0705(03)00110-5},
     language = {en},
}
TY  - JOUR
AU  - Carlo Sirtori
AU  - Julien Nagle
TI  - Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared
JO  - Comptes Rendus. Physique
PY  - 2003
SP  - 639
EP  - 648
VL  - 4
IS  - 6
PB  - Elsevier
DO  - 10.1016/S1631-0705(03)00110-5
LA  - en
ID  - CRPHYS_2003__4_6_639_0
ER  - 
%0 Journal Article
%A Carlo Sirtori
%A Julien Nagle
%T Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared
%J Comptes Rendus. Physique
%D 2003
%P 639-648
%V 4
%N 6
%I Elsevier
%R 10.1016/S1631-0705(03)00110-5
%G en
%F CRPHYS_2003__4_6_639_0
Carlo Sirtori; Julien Nagle. Quantum Cascade Lasers: the quantum technology for semiconductor lasers in the mid-far-infrared. Comptes Rendus. Physique, semiconductor lasers, Volume 4 (2003) no. 6, pp. 639-648. doi : 10.1016/S1631-0705(03)00110-5. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00110-5/

[1] J. Faist; F. Capasso; D.L. Sivco; C. Sirtori; A.L. Hutchinson; A.Y. Cho Quantum cascade laser, Science, Volume 264 (1994), pp. 553-556

[2] F. Capasso; C. Gmachl; D.L. Sivco; A.Y. Cho Quantum cascade lasers, Phys. Today, Volume 55 (2002), pp. 34-44

[3] J. Faist; F. Capasso; C. Sirtori; D.L. Sivco; A.Y. Cho Quantum cascade lasers (F. Capasso; H.C. Liu, eds.), Intersubband Transitions in Quantum Wells: Physics and Applications II, Semiconductors and Semimetals, 66, Academic Press, New York, 2000, pp. 1-83

[4] C. Sirtori; P. Kruck; S. Barbieri; P. Collot; J. Nagle; M. Beck; J. Faist; U. Oesterle GaAs/AlxGa1−xAs quantum cascade lasers, Appl. Phys. Lett., Volume 73 (1998), pp. 3486-3488

[5] L. Diehl; S. Mentese; E. Müller; D. Grützmacher; H. Sigg; U. Gennser; I. Sagnes; Y. Campidelli; O. Kermarrec; D. Bensahel; J. Faist Electroluminescence from strain-compensated Si0.2Ge0.8/Si quantum-cascade structures based on a bound-to-continuum transition, Appl. Phys. Lett., Volume 81 (2002), pp. 4700-4702

[6] C. Becker; I. Prévot; X. Marcadet; B. Vinter; C. Sirtori InAs/AlSb quantum-cascade light-emitting devices in the 3–5 μm wavelength region, Appl. Phys. Lett., Volume 78 (2001), pp. 1029-1031

[7] R. Köhler; A. Tredicucci; F. Beltram; H.E. Beere; E.H. Linfield; A.G. Davies; D.A. Ritchie; R.C. Iotti; F. Rossi Terahertz semiconductor-heterostructure laser, Nature, Volume 417 (2002), pp. 156-159

[8] C. Sirtori; H. Page; C. Becker GaAs-based quantum cascade lasers, Philos. Trans. Roy. Soc. London Ser. A, Volume 359 (2001), pp. 505-522

[9] J. Faist; D. Hofstetter; M. Beck; T. Allen; M. Rochat; S. Blaser Bound-to-continuum and two-phonon resonance quantum cascade lasers for high duty cycle, high temperature operation, IEEE J. Quantum Electron., Volume 38 (2002), pp. 533-546

[10] R. Ferreira; G. Bastard Evaluation of some scattering times for electrons in unbiased and biased single- and multiple-quantum-well structures, Phys. Rev. B, Volume 40 (1989), pp. 1074-1085

[11] H. Page; C. Becker; A. Robertson; G. Glastre; V. Ortiz; C. Sirtori 300 K operation of a GaAs-based quantum-cascade laser at λ∼9 μm, Appl. Phys. Lett., Volume 78 (2001), pp. 3529-3531

[12] C. Sirtori; F. Capasso; J. Faist; D.L. Sivco; A.L. Hutchinson; A.Y. Cho Resonant tunneling effect in quantum cascade lasers, IEEE J. Quantum Electron., Volume 34 (1998), pp. 1722-1729

[13] C. Sirtori; H. Page; C. Becker; V. Ortiz GaAs/AlGaAs quantum cascade lasers: physics technology and prospects, IEEE J. Quantum Electron., Volume 38 (2002), pp. 547-558

[14] F. Capasso; R. Paiella; R. Martini; R. Colombelli; C. Gmachl; T.L. Myers; M.S. Taubman; R.M. Williams; C.G. Bethea; K. Unterrainer; H.Y. Hwang; D.L. Sivco; A.Y. Cho; A.M. Sergent; H.C. Liu; E.A. Wittaker Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far infrared emission, IEEE J. Quantum Electron., Volume 38 (2002), pp. 511-532

[15] C. Sirtori Bridge for the Terahertz gap, Nature, Volume 417 (2002), pp. 132-133

[16] J. Faist; F. Capasso; D.L. Sivco; A.L. Hutchinson; S.N.G. Chu; A.Y. Cho Short wavelength (λ∼3.4 μm) quantum cascade laser based on strained compensated InGaAs/AlInAs, Appl. Phys. Lett., Volume 72 (1998), pp. 680-682

[17] D. Hofstetter; M. Beck; T. Allen; J. Faist High-temperature operation of distributed feedback quantum-cascade lasers at 5.3 μm, Appl. Phys. Lett., Volume 78 (2001), pp. 396-398

[18] M. Beck; D. Hofstetter; T. Allen; J. Faist; U. Oesterle; M. Ilegems; E. Gini; H. Melchior Continuous wave operation of a mid-infrared semiconductor laser at room temperature, Science, Volume 295 (2002), pp. 301-305

[19] A.A. Kosterev; F.K. Tittel Chemical sensors based on quantum cascade lasers, IEEE J. Quantum Electron., Volume 38 (2002), pp. 582-591

[20] R. Paiella; F. Capasso; C. Gmachl; D.L. Sivco; J.N. Baillargeon; A.L. Hutchinson; A.Y. Cho; H.C. Liu Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities, Science, Volume 290 (2000), pp. 1739-1742

[21] R. Paiella; F. Capasso; C. Gmachl; H.Y. Hwang; D.L. Sivco; A.L. Hutchinson; A.Y. Cho; H.C. Liu Monolithic active mode locking of quantum cascade lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 169-171

[22] R. Paiella; R. Martini; F. Capasso; C. Gmachl; H.Y. Hwang; D.L. Sivco; J.N. Baillargeon; A.Y. Cho; E.A. Wittaker; H.C. Liu High-frequency modulation without the relaxation oscillation resonance in quantum cascade lasers, Appl. Phys. Lett., Volume 79 (2001), pp. 2526-2528

[23] J. Faist; C. Gmachl; F. Capasso; C. Sirtori; D.L. Sivco; J.N. Baillargeon; A.L. Hutchinson; A.Y. Cho Distributed feedback quantum cascade lasers, Appl. Phys. Lett., Volume 70 (1997), pp. 2670-2672

[24] W. Schrenk; N. Finger; S. Gianordoli; E. Gornik; G. Strasser Continuous-wave operation of distributed-feedback AlAs/GaAs superlattice quantum-cascade lasers, Appl. Phys. Lett., Volume 77 (2000), pp. 3328-3330

[25] S. Blaser; L. Diehl; M. Beck; J. Faist; U. Oesterle; J. Xu; S. Barbieri; F. Beltram Characterization and modeling of quantum cascade lasers based on a photon-assisted tunneling transition, IEEE J. Quantum Electron., Volume 37 (2001), pp. 448-455

[26] T.L. Myers; R.M. Williams; M.S. Taubman; C. Gmachl; F. Capasso; D.L. Sivco; A.Y. Cho Free-running frequency stability of mid-infrared quantum cascade lasers, Opt. Lett., Volume 27 (2002), pp. 170-172

[27] R. Martini; C.G. Bethea; F. Capasso; C. Gmachl; R. Paiella; E.A. Wittaker; H.Y. Hwang; D.L. Sivco; J.N. Baillargeon; A.Y. Cho Free-space optical transmission of multimedia satellite data streams using mid-infrared quantum cascade lasers, Electron. Lett., Volume 38 (2002), pp. 181-183

[28] R. Martini; C. Gmachl; J. Falciglia; F.G. Curti; C.G. Bethea; F. Capasso; E.A. Wittaker; R. Paiella; A. Tredicucci; A.L. Hutchinson; D.L. Sivco; A.Y. Cho High speed modulation and free space optical audio/video transmission using quantum cascade lasers, Electron. Lett., Volume 37 (2001), pp. 191-192

Cité par Sources :

Commentaires - Politique