Comptes Rendus
Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics
[Relaxation par corrélation croisée en RMN de macromolécules en présence de dynamiques internes lente et rapide]
Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 377-386.

Dans cet article, nous présentons une analyse des fonctions de corrélation et de densité spectrale impliquées dans l'auto-relaxation et la relaxation par corrélation croisée en résonance magnétique des macromolécules. La dynamique interne d'une macromolécule est décrite par deux processus distincts de fluctuations internes respectivement lent et rapide, associés à des temps de corrélation différents. L'approche développée dans ce travail prend en compte un possible couplage entre ces deux types de mouvements internes.

In this paper we present an analysis of correlation and spectral density functions involved in autorelaxation and cross-correlated relaxation in the magnetic resonance of macromolecules. Internal dynamics of the macromolecule are described in terms of two distinct fluctuation processes with different, slow and fast, correlation times. The approach developed in this work takes into account the possible coupling between both fluctuating internal processes.

Publié le :
DOI : 10.1016/j.crhy.2004.02.004
Keywords: NMR, Relaxation, Order parameter, Lipari–Szabo, Internal mobility
Mots-clés : RMN, Relaxation, Paramètres d'ordre Lipari–Szabo, Mouvements internes

Liliya Vugmeyster 1 ; Philippe Pelupessy 2 ; Boris E. Vugmeister 3 ; Daniel Abergel 2 ; Geoffrey Bodenhausen 1, 2

1 Institut de chimie moléculaire et biologique, École polytechnique fédérale de Lausanne, BCH, 1015 Lausanne, Switzerland
2 Département de chimie, associé au CNRS, École normale supérieure, 24, rue Lhomond, 75231 Paris cedex 05, France
3 Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
@article{CRPHYS_2004__5_3_377_0,
     author = {Liliya Vugmeyster and Philippe Pelupessy and Boris E. Vugmeister and Daniel Abergel and Geoffrey Bodenhausen},
     title = {Cross-correlated relaxation in {NMR} of macromolecules in the presence of fast and slow internal dynamics},
     journal = {Comptes Rendus. Physique},
     pages = {377--386},
     publisher = {Elsevier},
     volume = {5},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crhy.2004.02.004},
     language = {en},
}
TY  - JOUR
AU  - Liliya Vugmeyster
AU  - Philippe Pelupessy
AU  - Boris E. Vugmeister
AU  - Daniel Abergel
AU  - Geoffrey Bodenhausen
TI  - Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 377
EP  - 386
VL  - 5
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.02.004
LA  - en
ID  - CRPHYS_2004__5_3_377_0
ER  - 
%0 Journal Article
%A Liliya Vugmeyster
%A Philippe Pelupessy
%A Boris E. Vugmeister
%A Daniel Abergel
%A Geoffrey Bodenhausen
%T Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics
%J Comptes Rendus. Physique
%D 2004
%P 377-386
%V 5
%N 3
%I Elsevier
%R 10.1016/j.crhy.2004.02.004
%G en
%F CRPHYS_2004__5_3_377_0
Liliya Vugmeyster; Philippe Pelupessy; Boris E. Vugmeister; Daniel Abergel; Geoffrey Bodenhausen. Cross-correlated relaxation in NMR of macromolecules in the presence of fast and slow internal dynamics. Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 377-386. doi : 10.1016/j.crhy.2004.02.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.02.004/

[1] A. Kumar; R.G. Christy; P.K. Madhu Prog. NMR Spectrosc., 37 (2000), pp. 191-319

[2] D. Frueh Progr. Nucl. Magn. Reson. Spectrosc., 41 (2003), pp. 305-324

[3] M. Goldman J. Magn. Reson., 60 (1984), pp. 437-452

[4] B. Brutscher Concepts Magn. Reson., 12 (2000), pp. 207-234

[5] I.C. Felli; H. Desvaux; G. Bodenhausen J. Biomol. Nucl. Magn. Reson., 12 (1998), pp. 509-521

[6] P. Pelupessy; S. Ravindranathan; G. Bodenhausen J. Biomol. Nucl. Magn. Reson., 25 (2003), pp. 265-280

[7] H. Desvaux J. Magn. Reson., 127 (1997), pp. 1-16

[8] E. Chiarparin; P. Pelupessy; R. Ghose; G. Bodenhausen J. Am. Chem. Soc., 121 (2002), pp. 6876-6883

[9] J. Dittmer; C. Kim; G. Bodenhausen J. Biomol. Nucl. Magn. Reson., 26 (2003), pp. 259-275

[10] G. Lipari; A.J. Szabo J. Amer. Chem. Soc., 104 (1982), pp. 4546-4559

[11] V.A. Daragan; K.H. Mayo Progr. Nucl. Magn. Reson. Spectrosc., 32 (1997), pp. 63-105

[12] A.G. Palmer Annu. Rev. Biophys. Biomol. Struct., 30 (2001), pp. 129-155

[13] A.G. Palmer; A.J. McDermott J. Phys. Chem., 199 (1996), pp. 13293-13310

[14] L.E. Kay Nat. Struct. Biol., 7 (2000), pp. 740-743

[15] R.T. Ishima Nat. Struct. Biol., 7 (2000), pp. 740-743

[16] V. Tugarivov; Z. Liang; Yu.E. Shapiro; J.H. Freed; E. Meirovitch J. Am. Chem. Soc., 123 (2001), pp. 3055-3063

[17] L. Vugmeyster; D.P. Raleigh; A.G. Palmer; B.E. Vugmeister J. Am. Chem. Soc., 125 (2003), pp. 8400-8404

[18] M.G. Clore; A. Szabo; A. Bax; L.E. Kay; P.C. Driscoll; A.M. Gronenborn J. Am. Chem. Soc., 112 (1990), p. 4989

[19] V.A. Daragan; K.H. Mayo J. Magn. Reson., 100 (1996), pp. 8378-8388

[20] M. Deschamps; G. Bodenhausen ChemPhysChem., 2 (2002), pp. 539-543

[21] M. Deschamps J. Phys. Chem. A, 106 (2002), pp. 2438-2445

[22] V.A. Daragan; K.H. Mayo J. Phys. Chem. B, 103 (1999), pp. 6829-6834

[23] D.M. Korzhnev Progr. Nucl. Magn. Reson. Spectrosc., 38 (2001), pp. 197-266

[24] S. Vijay-Kumar; C.E. Bugg; C.J. Cook J. Mol. Biol., 194 (1987), pp. 531-534

[25] G. Cornilescu; J.L. Marquardt; M. Ottiger; A. Bax J. Am. Chem. Soc., 120 (1998), pp. 6836-6837

  • Clemens Kauffmann; Irene Ceccolini; Georg Kontaxis; Robert Konrat Detecting anisotropic segmental dynamics in disordered proteins by cross-correlated spin relaxation, Magnetic Resonance, Volume 2 (2021) no. 2, p. 557 | DOI:10.5194/mr-2-557-2021
  • Beat Vögeli; Liliya Vugmeyster Distance‐independent Cross‐correlated Relaxation and Isotropic Chemical Shift Modulation in Protein Dynamics Studies, ChemPhysChem, Volume 20 (2019) no. 2, p. 178 | DOI:10.1002/cphc.201800602
  • A. Joshua Wand; Kim A. Sharp Measuring Entropy in Molecular Recognition by Proteins, Annual Review of Biophysics, Volume 47 (2018) no. 1, p. 41 | DOI:10.1146/annurev-biophys-060414-034042
  • R. Bryn Fenwick; Beat Vögeli Detection of Correlated Protein Backbone and Side‐Chain Angle Fluctuations, ChemBioChem, Volume 18 (2017) no. 20, p. 2016 | DOI:10.1002/cbic.201700312
  • Beat Vögeli Cross-correlated relaxation rates between protein backbone H–X dipolar interactions, Journal of Biomolecular NMR, Volume 67 (2017) no. 3, p. 211 | DOI:10.1007/s10858-017-0098-5
  • R. Bryn Fenwick; Charles D. Schwieters; Beat Vögeli Direct Investigation of Slow Correlated Dynamics in Proteins via Dipolar Interactions, Journal of the American Chemical Society, Volume 138 (2016) no. 27, p. 8412 | DOI:10.1021/jacs.6b01447
  • A. Joshua Wand; Veronica R. Moorman; Kyle W. Harpole A Surprising Role for Conformational Entropy in Protein Function, Dynamics in Enzyme Catalysis, Volume 337 (2013), p. 69 | DOI:10.1007/128_2012_418
  • Beat Vögeli Full relaxation matrix analysis of apparent cross-correlated relaxation rates in four-spin systems, Journal of Magnetic Resonance, Volume 226 (2013), p. 52 | DOI:10.1016/j.jmr.2012.11.002
  • David Ban; T. Sabo; Christian Griesinger; Donghan Lee Measuring Dynamic and Kinetic Information in the Previously Inaccessible Supra-tc Window of Nanoseconds to Microseconds by Solution NMR Spectroscopy, Molecules, Volume 18 (2013) no. 10, p. 11904 | DOI:10.3390/molecules181011904
  • Jozef Kowalewski Nuclear spin relaxation in liquids and gases, Nuclear Magnetic Resonance (2012), p. 196 | DOI:10.1039/9781849734851-00196
  • Beat Vögeli How uniform is the peptide plane geometry? A high-accuracy NMR study of dipolar Cα–C′/HN–N cross-correlated relaxation, Journal of Biomolecular NMR, Volume 50 (2011) no. 4, p. 315 | DOI:10.1007/s10858-011-9519-z
  • Beat Vögeli; Roland Riek Side chain: backbone projections in aromatic and ASX residues from NMR cross-correlated relaxation, Journal of Biomolecular NMR, Volume 46 (2010) no. 2, p. 135 | DOI:10.1007/s10858-009-9387-y
  • Liliya Vugmeyster; Dmitry Ostrovsky; Ying Li Comparison of fast backbone dynamics at amide nitrogen and carbonyl sites in dematin headpiece C-terminal domain and its S74E mutant, Journal of Biomolecular NMR, Volume 47 (2010) no. 2, p. 155 | DOI:10.1007/s10858-010-9417-9
  • Beat Vögeli Comprehensive description of NMR cross-correlated relaxation under anisotropic molecular tumbling and correlated local dynamics on all time scales, The Journal of Chemical Physics, Volume 133 (2010) no. 1 | DOI:10.1063/1.3454734
  • Liliya Vugmeyster; C. James McKnight Phosphorylation-induced changes in backbone dynamics of the dematin headpiece C-terminal domain, Journal of Biomolecular NMR, Volume 43 (2009) no. 1, p. 39 | DOI:10.1007/s10858-008-9289-4
  • Beat Vögeli; Lishan Yao Correlated Dynamics between Protein HN and HC Bonds Observed by NMR Cross Relaxation, Journal of the American Chemical Society, Volume 131 (2009) no. 10, p. 3668 | DOI:10.1021/ja808616v
  • Liliya Vugmeyster Slow backbone dynamics of chicken villin headpiece subdomain probed by NMR C′N cross‐correlated relaxation, Magnetic Resonance in Chemistry, Volume 47 (2009) no. 9, p. 746 | DOI:10.1002/mrc.2456
  • Liliya Vugmeyster; C. James McKnight Slow Motions in Chicken Villin Headpiece Subdomain Probed by Cross-Correlated NMR Relaxation of Amide NH Bonds in Successive Residues, Biophysical Journal, Volume 95 (2008) no. 12, p. 5941 | DOI:10.1529/biophysj.108.134320
  • Jörg Rinnenthal; Christian Richter; Jan Ferner; Elke Duchardt; Harald Schwalbe Quantitative Γ-HCNCH: determination of the glycosidic torsion angle χ in RNA oligonucleotides from the analysis of CH dipolar cross-correlated relaxation by solution NMR spectroscopy, Journal of Biomolecular NMR, Volume 39 (2007) no. 1, p. 17 | DOI:10.1007/s10858-007-9167-5
  • Shalom Michaeli; Dennis J. Sorce; Charles S. Springer; Kamil Ugurbil; Michael Garwood T1ρ MRI contrast in the human brain: Modulation of the longitudinal rotating frame relaxation shutter-speed during an adiabatic RF pulse, Journal of Magnetic Resonance, Volume 181 (2006) no. 1, p. 135 | DOI:10.1016/j.jmr.2006.04.002
  • L. Vugmeyster; G. Bodenhausen Temperature-dependent protein backbone dynamics from auto- and cross-correlated NMR relaxation rates, Applied Magnetic Resonance, Volume 28 (2005) no. 1-2 | DOI:10.1007/bf03167001
  • Hashim M. Al‐Hashimi Dynamics‐Based Amplification of RNA Function and Its Characterization by Using NMR Spectroscopy, ChemBioChem, Volume 6 (2005) no. 9, p. 1506 | DOI:10.1002/cbic.200500002
  • Patrik Lundström; Frans A. A. Mulder; Mikael Akke Correlated dynamics of consecutive residues reveal transient and cooperative unfolding of secondary structure in proteins, Proceedings of the National Academy of Sciences, Volume 102 (2005) no. 47, p. 16984 | DOI:10.1073/pnas.0504361102
  • N. Hertkorn; A. Kettrup Molecular Level Structural Analysis of Natural Organic Matter and of Humic Substances by Multinuclear and Higher Dimensional NMR Spectroscopy, Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice, Volume 52 (2005), p. 391 | DOI:10.1007/1-4020-3252-8_21
  • Daniel Abergel; Geoffrey Bodenhausen A simple model for NMR relaxation in the presence of internal motions with dynamical coupling, The Journal of Chemical Physics, Volume 121 (2004) no. 2, p. 761 | DOI:10.1063/1.1756867

Cité par 25 documents. Sources : Crossref

Commentaires - Politique