Comptes Rendus
Orienting molecular fragments and molecules with residual dipolar couplings
[Orienter des fragments moléculaires et des molécules grâce aux couplages dipolaires résiduels]
Comptes Rendus. Physique, Volume 5 (2004) no. 3, pp. 359-375.

Les protéines et les acides nucléiques, tout comme leurs complexes, sont constitués de différents domaines dont la structure est souvent connue. Toutefois, la connaissance de la position relative de ces éléments reste souvent peu précise. Une bonne solution à ce problème consiste à exploiter les couplages dipolaires résiduels (RDCs) mesurés par des techniques de RMN en solution, en utilisant des échantillons faiblement orientés. En s'appuyant sur une approche basée sur des fragments rigides, l'orientation relative des différents éléments structuraux peut être optimisée afin d'être en accord avec les données de RDCs. Cet article explique pourquoi cette approche est bien adaptée à leur exploitation et discute son implémentation. Des exemples d'une telle approche appliquée à des fragments de protéines, à des hélices d'ARN, à des protéines multidomaines, à des systèmes ligand-protéine ou encore à des complexes de protéines sont décrits en détails. La discussion comprend également le cas des systèmes en équilibre conformationnel. Les différentes dégénérescences inhérentes aux couplages dipolaires résiduels sont considérées ainsi que les méthodes permettant de lever ces ambiguités.

Many proteins and nucleic acids, as well as their complexes, consist of structural units with a known internal structure. However, relative position of these units within the entity is often a subject of uncertainty. This problem can be effectively addressed with the help of residual dipolar couplings (RDCs) measured by solution-state NMR in weakly oriented samples. Using a rigid-body approach, the relative orientation of the structural units can be adjusted to match the experimental RDC data. This paper explains why the rigid-body approach is well suited for application with the RDC data and discusses the general algorithm suitable for such studies. The examples of RDC-based rigid-body treatment involving protein backbone fragments, RNA helices, multidomain proteins, protein-ligand systems, and protein complexes are described in detail. The discussion includes systems where multiple structures co-exist in a dynamic equilibrium. Various degeneracies associated with the RDC data are considered and the methods that can assist in resolving the ambiguities are described.

Publié le :
DOI : 10.1016/j.crhy.2004.02.006
Keywords: Residual dipolar couplings, Solution-state NMR
Mot clés : Couplages dipolaires résiduels, RMN en solution
Nikolai R. Skrynnikov 1

1 Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
@article{CRPHYS_2004__5_3_359_0,
     author = {Nikolai R. Skrynnikov},
     title = {Orienting molecular fragments and molecules with residual dipolar couplings},
     journal = {Comptes Rendus. Physique},
     pages = {359--375},
     publisher = {Elsevier},
     volume = {5},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crhy.2004.02.006},
     language = {en},
}
TY  - JOUR
AU  - Nikolai R. Skrynnikov
TI  - Orienting molecular fragments and molecules with residual dipolar couplings
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 359
EP  - 375
VL  - 5
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.02.006
LA  - en
ID  - CRPHYS_2004__5_3_359_0
ER  - 
%0 Journal Article
%A Nikolai R. Skrynnikov
%T Orienting molecular fragments and molecules with residual dipolar couplings
%J Comptes Rendus. Physique
%D 2004
%P 359-375
%V 5
%N 3
%I Elsevier
%R 10.1016/j.crhy.2004.02.006
%G en
%F CRPHYS_2004__5_3_359_0
Nikolai R. Skrynnikov. Orienting molecular fragments and molecules with residual dipolar couplings. Comptes Rendus. Physique, Volume 5 (2004) no. 3, pp. 359-375. doi : 10.1016/j.crhy.2004.02.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.02.006/

[1] J.R. Tolman; J.M. Flanagan; M.A. Kennedy; J.H. Prestegard Proc. Natl. Acad. Sci. USA, 92 (1995), pp. 9279-9283

[2] N. Tjandra; A. Bax Science, 278 (1997), pp. 1111-1114

[3] J.A. Losonczi; M. Andrec; M.W.F. Fischer; J.H. Prestegard J. Magn. Reson., 138 (1999), pp. 334-342

[4] M.L. Mattinen; K. Pääkkönen; T. Ikonen; J. Craven; T. Drakenberg; R. Serimaa; J. Waltho; A. Annila Biophys. J., 83 (2002), pp. 1177-1183

[5] S. Arumugam; S.R. Van Doren Biochemistry, 42 (2003), pp. 7950-7958

[6] M.A. Markus; R.B. Gerstner; D.E. Draper; D.A. Torchia J. Mol. Biol., 292 (1999), pp. 375-387

[7] G. Cornilescu; J.L. Marquardt; M. Ottiger; A. Bax J. Am. Chem. Soc., 120 (1998), pp. 6836-6837

[8] G.M. Clore; D.S. Garrett J. Am. Chem. Soc., 121 (1999), pp. 9008-9012

[9] J.R. Tolman; H.M. Al-Hashimi; L.E. Kay; J.H. Prestegard J. Am. Chem. Soc., 123 (2001), pp. 1416-1424

[10] N.R. Skrynnikov; N.K. Goto; D.W. Yang; W.Y. Choy; J.R. Tolman; G.A. Mueller; L.E. Kay J. Mol. Biol., 295 (2000), pp. 1265-1273

[11] M. Zweckstetter; A. Bax J. Biomol. NMR, 23 (2002), pp. 127-137

[12] G.M. Clore; A.M. Gronenborn; N. Tjandra J. Magn. Reson., 131 (1998), pp. 159-162

[13] G.M. Clore; A.M. Gronenborn; A. Bax J. Magn. Reson., 133 (1998), pp. 216-221

[14] J.J. Warren; P.B. Moore J. Magn. Reson., 149 (2001), pp. 271-275

[15] J. Meiler; N. Blomberg; M. Nilges; C. Griesinger J. Biomol. NMR, 16 (2000), pp. 245-252

[16] N.R. Skrynnikov; L.E. Kay J. Biomol. NMR, 18 (2000), pp. 239-252

[17] W.J. Wedemeyer; C.A. Rohl; H.A. Scheraga J. Biomol. NMR, 22 (2002), pp. 137-151

[18] N. Sibille; A. Pardi; J.P. Simorre; M. Blackledge J. Am. Chem. Soc., 123 (2001), pp. 12135-12146

[19] V. Tsui; L.M. Zhu; T.H. Huang; P.E. Wright; D.A. Case J. Biomol. NMR, 16 (2000), pp. 9-21

[20] H.M. Al-Hashimi; J.R. Tolman; A. Majumdar; A. Gorin; D.J. Patel J. Am. Chem. Soc., 123 (2001), pp. 5806-5807

[21] M. Zweckstetter; A. Bax J. Am. Chem. Soc., 122 (2000), pp. 3791-3792

[22] M.X. Fernandes; P. Bernadó; M. Pons; J.G. de la Torre J. Am. Chem. Soc., 123 (2001), pp. 12037-12047

[23] H.M. Al-Hashimi; H. Valafar; M. Terrell; E.R. Zartler; M.K. Eidsness; J.H. Prestegard J. Magn. Reson., 143 (2000), pp. 402-406

[24] D.M. Jacobs; K. Saxena; M. Vogtherr; P. Bernadó; M. Pons; K.M. Fiebig J. Biol. Chem., 278 (2003), pp. 26174-26182

[25] H.M. Al-Hashimi; P.J. Bolon; J.H. Prestegard J. Magn. Reson., 142 (2000), pp. 153-158

[26] G.S. Thompson; H. Shimizu; S.W. Homans; A. Donohue-Rolfe Biochemistry, 39 (2000), pp. 13153-13156

[27] A. Bax Protein Sci., 12 (2003), pp. 1-16

[28] R. Brüschweiler; X.B. Liao; P.E. Wright Science, 268 (1995), pp. 886-889

[29] P.M. Hwang; N.R. Skrynnikov; L.E. Kay J. Biomol. NMR, 20 (2001), pp. 83-88

[30] J. Kikuchi; J. Iwahara; T. Kigawa; Y. Murakami; T. Okazaki; S. Yokoyama J. Biomol. NMR, 22 (2002), pp. 333-347

[31] R. Varadan; O. Walker; C. Pickart; D. Fushman J. Mol. Biol., 324 (2002), pp. 637-647

[32] C.A. Fowler; F. Tian; H.M. Al-Hashimi; J.H. Prestegard J. Mol. Biol., 304 (2000), pp. 447-460

[33] J.H. Prestegard Nat. Struct. Biol., 5 (1998), pp. 517-522

[34] P.J. Bolon; H.M. Al-Hashimi; J.H. Prestegard J. Mol. Biol., 293 (1999), pp. 107-115

[35] J.R. Tolman; J.M. Flanagan; M.A. Kennedy; J.H. Prestegard Nat. Struct. Biol., 4 (1997), pp. 292-297

[36] M.W.F. Fischer; J.A. Losonczi; J.L. Weaver; J.H. Prestegard Biochemistry, 38 (1999), pp. 9013-9022

[37] J.J. Chou; S.P. Li; C.B. Klee; A. Bax Nat. Struct. Biol., 8 (2001), pp. 990-997

[38] N.K. Goto; N.R. Skrynnikov; F.W. Dahlquist; L.E. Kay J. Mol. Biol., 308 (2001), pp. 745-764

[39] K. Bondensgaard; E.T. Mollova; A. Pardi Biochemistry, 41 (2002), pp. 11532-11542

[40] C.A.E.M. Spronk; J.P. Linge; C.W. Hilbers; G.W. Vuister J. Biomol. NMR, 22 (2002), pp. 281-289

[41] G.S. Wang; J.M. Louis; M. Sondej; Y.J. Seok; A. Peterkofsky; G.M. Clore EMBO J., 19 (2000), pp. 5635-5649

[42] D. Fushman; R. Ghose; D. Cowburn J. Am. Chem. Soc., 122 (2000), pp. 10640-10649

[43] A.T. Brunger XPLOR: A System for X-ray Crystallography and NMR, Yale University Press, New Haven, CT, 1993

[44] Molecular Simulations Inc., San-Diego

[45] P. Güntert; C. Mumenthaler; K. Wüthrich J. Mol. Biol., 273 (1997), pp. 283-298

[46] C.D. Schwieters; J.J. Kuszewski; N. Tjandra; G.M. Clore J. Magn. Reson., 160 (2003), pp. 65-73

[47] G.M. Clore; C.A. Bewley J. Magn. Reson., 154 (2002), pp. 329-335

[48] G.M. Clore; C.D. Schwieters J. Am. Chem. Soc., 125 (2003), pp. 2902-2912

[49] S.A. McCallum; A. Pardi J. Mol. Biol., 326 (2003), pp. 1037-1050

[50] G. Lipari; A. Szabo Biophys. J., 30 (1980), pp. 489-506

[51] G.A. Mueller; W.Y. Choy; D.W. Yang; J.D. Forman-Kay; R.A. Venters; L.E. Kay J. Mol. Biol., 300 (2000), pp. 197-212

[52] J.C. Hus; D. Marion; M. Blackledge J. Am. Chem. Soc., 123 (2001), pp. 1541-1542

[53] L. Trantı́rek; M. Urbášek; R. Štefl; J. Feigon; V. Sklenář J. Am. Chem. Soc., 122 (2000), pp. 10454-10455

[54] F. Delaglio; G. Kontaxis; A. Bax J. Am. Chem. Soc., 122 (2000), pp. 2142-2143

[55] M. Andrec; P.C. Du; R.M. Levy J. Biomol. NMR, 21 (2001), pp. 335-347

[56] C.A. Rohl; D. Baker J. Am. Chem. Soc., 124 (2002), pp. 2723-2729

[57] L.C. Wang; Y.X. Pang; T. Holder; J.R. Brender; A.V. Kurochkin; E.R.P. Zuiderweg Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 7684-7689

[58] E.T. Mollova; M.R. Hansen; A. Pardi J. Am. Chem. Soc., 122 (2000), pp. 11561-11562

[59] H.M. Al-Hashimi; Y. Gosser; A. Gorin; W.D. Hu; A. Majumdar; D.J. Patel J. Mol. Biol., 315 (2002), pp. 95-102

[60] Q. Zhang; R. Throolin; S.W. Pitt; A. Serganov; H.M. Al-Hashimi J. Am. Chem. Soc., 125 (2003), pp. 10530-10531

[61] D.W. Yang; R.A. Venters; G.A. Mueller; W.Y. Choy; L.E. Kay J. Biomol. NMR, 14 (1999), pp. 333-343

[62] J. Evenas; V. Tugarinov; N.R. Skrynnikov; N.K. Goto; R. Muhandiram; L.E. Kay J. Mol. Biol., 309 (2001), pp. 961-974

[63] G. Cornilescu; F. Delaglio; A. Bax J. Biomol. NMR, 13 (1999), pp. 289-302

[64] R.A. Laskowski; J.A.C. Rullmann; M.W. MacArthur; R. Kaptein; J.M. Thornton J. Biomol. NMR, 8 (1996), pp. 477-486

[65] O. Millet; R.P. Hudson; L.E. Kay Proc. Natl. Acad. Sci. USA, 100 (2003), pp. 12700-12705

[66] B.W. Koenig; G. Kontaxis; D.C. Mitchell; J.M. Louis; B.J. Litman; A. Bax J. Mol. Biol., 322 (2002), pp. 441-461

[67] G.M. Clore Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 9021-9025

[68] D.S. Garrett; Y.J. Seok; A. Peterkofsky; A.M. Gronenborn; G.M. Clore Nat. Struct. Biol., 6 (1999), pp. 166-173

[69] G. Cornilescu; B.R. Lee; C.C. Cornilescu; G.S. Wang; A. Peterkofsky; G.M. Clore J. Biol. Chem., 277 (2002), pp. 42289-42298

[70] M.A. McCoy; D.F. Wyss J. Am. Chem. Soc., 124 (2002), pp. 11758-11763

[71] B.W. Koenig ChemBioChem, 3 (2002), pp. 975-980

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Comparison of the solution structures of a DNA dodecamer using NOE and residual dipolar coupling data

Francisco Alvarez-Salgado; Patrick Berthault; Yves Boulard; ...

C. R. Chim (2004)


The importance of being ordered: improving NMR structures using residual dipolar couplings

Angela M. Gronenborn

C. R. Biol (2002)