Comptes Rendus
Magnetic field dependence of proton spin-lattice relaxation of confined proteins
[Dépendance en champ magnétique de la relaxation spin-réseau du proton de protéines confinées]
Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 349-357.

Nous présentons les dépendances en champ magnétique des vitesses de relaxation spin-réseau 1/T1 des protons de protéines plus ou moins hydratées ainsi que confinées dans des gels organiques réticulés pour bloquer la rotation. La relaxation 1/T1 augmente en loi de puissance à basse fréquence et varie linéairement avec la température. Ceci est cohérent avec un processus direct de relaxation spin-réseau plutôt que Raman au dessus de 273 K. Pour interpréter nos résultats nous proposons une théorie dépendant à la fois de la distribution des protons dans la structure et de la localisation des fluctuations parallèlement et transversalement aux chaı̂nes peptidiques.

We present the magnetic field dependence of the proton spin-lattice relaxation rate 1/T1 in variously hydrated proteins and confined proteins in heavily hydrated gels where the protein molecular rotation has been immobilized. 1/T1 increases as a power law in the Larmor frequency at low magnetic field strengths. The linear temperature dependence of the protein proton 1/T1 demonstrates that relaxation results from a direct spin-phonon process instead of a Raman process above 273 K. We propose a theory that involves a simple characterization of the spatial distribution of the protons coupled with localized motions along and transverse to the polypeptide chain which accounts quantitatively for experiments.

Publié le :
DOI : 10.1016/j.crhy.2004.03.001
Keywords: Protein dynamics, Theory of spin-lattice relaxation, Confinement, Dipolar interaction, Localization, Fractal and spectral dimensions, Proton relaxation
Mots-clés : Dynamique de protéines, Théorie de relaxation spin-réseau, Confinement, Interaction dipolaire, Localisation, Dimensions fractale et spectrale, Relaxation dipolaire

Jean-Pierre Korb 1 ; Robert G. Bryant 2

1 Laboratoire de physique de la matière condensée, UMR 7643 du CNRS, École polytechnique, 91128 Palaiseau, France
2 Chemistry Department, University of Virginia, Charlottesville, VA 22904-4319, USA
@article{CRPHYS_2004__5_3_349_0,
     author = {Jean-Pierre Korb and Robert G. Bryant},
     title = {Magnetic field dependence of proton spin-lattice relaxation of confined proteins},
     journal = {Comptes Rendus. Physique},
     pages = {349--357},
     publisher = {Elsevier},
     volume = {5},
     number = {3},
     year = {2004},
     doi = {10.1016/j.crhy.2004.03.001},
     language = {en},
}
TY  - JOUR
AU  - Jean-Pierre Korb
AU  - Robert G. Bryant
TI  - Magnetic field dependence of proton spin-lattice relaxation of confined proteins
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 349
EP  - 357
VL  - 5
IS  - 3
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.03.001
LA  - en
ID  - CRPHYS_2004__5_3_349_0
ER  - 
%0 Journal Article
%A Jean-Pierre Korb
%A Robert G. Bryant
%T Magnetic field dependence of proton spin-lattice relaxation of confined proteins
%J Comptes Rendus. Physique
%D 2004
%P 349-357
%V 5
%N 3
%I Elsevier
%R 10.1016/j.crhy.2004.03.001
%G en
%F CRPHYS_2004__5_3_349_0
Jean-Pierre Korb; Robert G. Bryant. Magnetic field dependence of proton spin-lattice relaxation of confined proteins. Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 349-357. doi : 10.1016/j.crhy.2004.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.03.001/

[1] B.F. Rassmussen; A.M. Stock; D. Ringe; G.A. Petsko Nature, 357 (1992), p. 423

[2] L. Vitagliano; A. Merlino; A. Zagari; L. Mazzarella Proteins, 46 (2002), p. 97

[3] E. Perozo; A. Kloda; D.M. Cortes; B. Martinac Nature Struct. Biol., 9 (2002), p. 696

[4] A. Noack NMR Spectrosc., 18 (1986), p. 171

[5] J.-P. Korb; R.G. Bryant J. Chem. Phys., 115 (2001), p. 10964

[6] J.-P. Korb; R.G. Bryant Magn. Reson. Med., 48 (2002), p. 21

[7] C.C. Lester; R.G. Bryant Magn. Reson. Med., 21 (1991), p. 117

[8] C.C. Lester; R.G. Bryant Magn. Reson. Med., 22 (1991), p. 143

[9] R.G. Bryant Annu. Rev. Biophys. Biomol. Struct., 25 (1996), pp. 29-53

[10] W.M. Shirley; R.G. Bryant J. Amer. Chem. Soc., 104 (1982), p. 2910

[11] H.T. Edzes; E.T. Samulski J. Magn. Reson., 31 (1978), p. 207

[12] A. Abragam The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961

[13] R. Kimmich; F. Winter Progr. Colloid Polym. Sci., 71 (1985), p. 66

[14] J.-P. Korb; A. Van-Quynh; R.G. Bryant Chem. Phys. Lett. (2001), p. 339

[15] S. Alexander Phys. Rev. B, 40 (1989), p. 7953

[16] S. Alexander; R. Orbach J. Phys. Lett. (France), 43 (1982), p. L625

[17] E. Courtens; R. Vacher; J. Pelous; Th. Voignier Europhys. Lett., 6 (1988), p. 245

[18] T. Miyazawa; T. Shimanouchi; S. Mizushima J. Chem. Phys., 29 (1958), p. 611

[19] B. Halle; V.P. Denisov Biophys. J., 69 (1995), p. 242

[20] B. Halle; V.P. Denisov; K. Venu, Biological Magnetic Resonance, vol. 17, Kluwer Academic/Plenum, New York, 1999 (p. 419)

[21] B.W. Matthews J. Mol. Biol., 33 (1968), p. 491

[22] R. Lumry; A. Rosenberg L'eau et Les Systèmes Biologiques, 246 (1976), p. 53

  • Karol Kołodziejski; Elzbieta Masiewicz; Amnah Alamri; Vasileios Zampetoulas; Leslie Samuel; Graeme Murray; David J. Lurie; Lionel M. Broche; Danuta Kruk Markers of low field NMR relaxation features of tissues, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-74055-7
  • Elzbieta Masiewicz; Farman Ullah; Adrianna Mieloch; Janusz Godlewski; Danuta Kruk Dynamical properties of solid and hydrated collagen: Insight from nuclear magnetic resonance relaxometry, The Journal of Chemical Physics, Volume 160 (2024) no. 16 | DOI:10.1063/5.0191409
  • Aleksandra Stankiewicz; Adam Kasparek; Elzbieta Masiewicz; Danuta Kruk Diffusion of Water Molecules on the Surface of Silica Nanoparticles─Insights from Nuclear Magnetic Resonance Relaxometry, The Journal of Physical Chemistry B, Volume 128 (2024) no. 6, p. 1535 | DOI:10.1021/acs.jpcb.3c06451
  • Danuta Kruk; Adam Kasparek; Elzbieta Masiewicz; Karol Kolodziejski; Radoslaw Cybulski; Bartosz Nowak Water Dynamics in Highly Concentrated Protein Systems—Insight from Nuclear Magnetic Resonance Relaxometry, International Journal of Molecular Sciences, Volume 24 (2023) no. 4, p. 4093 | DOI:10.3390/ijms24044093
  • Małgorzata Florek‐Wojciechowska Dynamics of Arabic gum aqueous solutions as revealed by NMR relaxometry, Journal of the Science of Food and Agriculture, Volume 102 (2022) no. 13, p. 5808 | DOI:10.1002/jsfa.11930
  • Moritz Zaiss; Tao Jin; Seong‐Gi Kim; Daniel F. Gochberg Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields, NMR in Biomedicine, Volume 35 (2022) no. 11 | DOI:10.1002/nbm.4789
  • Danuta Kruk; Małgorzata Florek-Wojciechowska Recent development in 1H NMR relaxometry, Volume 99 (2020), p. 119 | DOI:10.1016/bs.arnmr.2019.10.001
  • Hassan Abbas; Lionel M. Broche; Aiarpi Ezdoglian; Dmitriy Li; Raif Yuecel; P. James Ross; Lesley Cheyne; Heather M. Wilson; David J. Lurie; Dana K. Dawson Fast field-cycling magnetic resonance detection of intracellular ultra-small iron oxide particles in vitro: Proof-of-concept, Journal of Magnetic Resonance, Volume 313 (2020), p. 106722 | DOI:10.1016/j.jmr.2020.106722
  • Danuta Kruk; Elzbieta Masiewicz; Milosz Wojciechowski; Malgorzata Florek-Wojciechowska; Lionel M. Broche; David J. Lurie Slow dynamics of solid proteins – Nuclear magnetic resonance relaxometry versus dielectric spectroscopy, Journal of Magnetic Resonance, Volume 314 (2020), p. 106721 | DOI:10.1016/j.jmr.2020.106721
  • Elzbieta Masiewicz; George P. Ashcroft; David Boddie; Sinclair R. Dundas; Danuta Kruk; Lionel M. Broche Towards applying NMR relaxometry as a diagnostic tool for bone and soft tissue sarcomas: a pilot study, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-71067-x
  • Danuta Kruk; Elzbieta Masiewicz; Anna Borkowska; Pawel Rochowski; Pascal Fries; Lionel Broche; David Lurie Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry, Biomolecules, Volume 9 (2019) no. 11, p. 652 | DOI:10.3390/biom9110652
  • Lionel M. Broche; P. James Ross; Gareth R. Davies; Mary-Joan MacLeod; David J. Lurie A whole-body Fast Field-Cycling scanner for clinical molecular imaging studies, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-46648-0
  • Peter S. Belton NMR studies of hydration in low water content biopolymer systems, Magnetic Resonance in Chemistry, Volume 49 (2011) no. S1 | DOI:10.1002/mrc.2848
  • Galina Diakova; Yanina A. Goddard; Jean-Pierre Korb; Robert G. Bryant Water and Backbone Dynamics in a Hydrated Protein, Biophysical Journal, Volume 98 (2010) no. 1, p. 138 | DOI:10.1016/j.bpj.2009.09.054
  • Lucia Calucci; Claudia Forte Proton longitudinal relaxation coupling in dynamically heterogeneous soft systems, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 55 (2009) no. 4, p. 296 | DOI:10.1016/j.pnmrs.2009.06.003
  • Yanina Goddard; Jean‐Pierre Korb; Robert G. Bryant Nuclear magnetic relaxation dispersion study of the dynamics in solid homopolypeptides, Biopolymers, Volume 86 (2007) no. 2, p. 148 | DOI:10.1002/bip.20714
  • Jean-Pierre Korb; Galina Diakova; Yanina Goddard; Robert G. Bryant Relaxation of protons by radicals in rotationally immobilized proteins, Journal of Magnetic Resonance, Volume 186 (2007) no. 2, p. 176 | DOI:10.1016/j.jmr.2007.02.006
  • Yanina Goddard; Jean-Pierre Korb; Robert G. Bryant The magnetic field and temperature dependences of proton spin-lattice relaxation in proteins, The Journal of Chemical Physics, Volume 126 (2007) no. 17 | DOI:10.1063/1.2727464
  • Yanina A. Goddard; Jean-Pierre Korb; Robert G. Bryant Structural and Dynamical Examination of the Low-Temperature Glass Transition in Serum Albumin, Biophysical Journal, Volume 91 (2006) no. 10, p. 3841 | DOI:10.1529/biophysj.106.090126
  • Jean-Pierre Korb; Galina Diakova; Robert G. Bryant Paramagnetic relaxation of protons in rotationally immobilized proteins, The Journal of Chemical Physics, Volume 124 (2006) no. 13 | DOI:10.1063/1.2183311
  • JEAN-PIERRE KORB; ROBERT G. BRYANT MAGNETIC RELAXATION DISPERSION IN POROUS AND DYNAMICALLY HETEROGENEOUS MATERIALS, Volume 57 (2005), p. 293 | DOI:10.1016/s0898-8838(05)57006-5
  • Jean-Pierre Korb; Robert G. Bryant Noise and Functional Protein Dynamics, Biophysical Journal, Volume 89 (2005) no. 4, p. 2685 | DOI:10.1529/biophysj.105.060178
  • Robert G. Bryant; Jean-Pierre Korb Nuclear magnetic resonance and spin relaxation in biological systems, Magnetic Resonance Imaging, Volume 23 (2005) no. 2, p. 167 | DOI:10.1016/j.mri.2004.11.026

Cité par 23 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: