[Dépendance en champ magnétique de la relaxation spin-réseau du proton de protéines confinées]
Nous présentons les dépendances en champ magnétique des vitesses de relaxation spin-réseau 1/T1 des protons de protéines plus ou moins hydratées ainsi que confinées dans des gels organiques réticulés pour bloquer la rotation. La relaxation 1/T1 augmente en loi de puissance à basse fréquence et varie linéairement avec la température. Ceci est cohérent avec un processus direct de relaxation spin-réseau plutôt que Raman au dessus de 273 K. Pour interpréter nos résultats nous proposons une théorie dépendant à la fois de la distribution des protons dans la structure et de la localisation des fluctuations parallèlement et transversalement aux chaı̂nes peptidiques.
We present the magnetic field dependence of the proton spin-lattice relaxation rate 1/T1 in variously hydrated proteins and confined proteins in heavily hydrated gels where the protein molecular rotation has been immobilized. 1/T1 increases as a power law in the Larmor frequency at low magnetic field strengths. The linear temperature dependence of the protein proton 1/T1 demonstrates that relaxation results from a direct spin-phonon process instead of a Raman process above 273 K. We propose a theory that involves a simple characterization of the spatial distribution of the protons coupled with localized motions along and transverse to the polypeptide chain which accounts quantitatively for experiments.
Mots-clés : Dynamique de protéines, Théorie de relaxation spin-réseau, Confinement, Interaction dipolaire, Localisation, Dimensions fractale et spectrale, Relaxation dipolaire
Jean-Pierre Korb 1 ; Robert G. Bryant 2
@article{CRPHYS_2004__5_3_349_0, author = {Jean-Pierre Korb and Robert G. Bryant}, title = {Magnetic field dependence of proton spin-lattice relaxation of confined proteins}, journal = {Comptes Rendus. Physique}, pages = {349--357}, publisher = {Elsevier}, volume = {5}, number = {3}, year = {2004}, doi = {10.1016/j.crhy.2004.03.001}, language = {en}, }
Jean-Pierre Korb; Robert G. Bryant. Magnetic field dependence of proton spin-lattice relaxation of confined proteins. Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 349-357. doi : 10.1016/j.crhy.2004.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.03.001/
[1] Nature, 357 (1992), p. 423
[2] Proteins, 46 (2002), p. 97
[3] Nature Struct. Biol., 9 (2002), p. 696
[4] NMR Spectrosc., 18 (1986), p. 171
[5] J. Chem. Phys., 115 (2001), p. 10964
[6] Magn. Reson. Med., 48 (2002), p. 21
[7] Magn. Reson. Med., 21 (1991), p. 117
[8] Magn. Reson. Med., 22 (1991), p. 143
[9] Annu. Rev. Biophys. Biomol. Struct., 25 (1996), pp. 29-53
[10] J. Amer. Chem. Soc., 104 (1982), p. 2910
[11] J. Magn. Reson., 31 (1978), p. 207
[12] The Principles of Nuclear Magnetism, Clarendon Press, Oxford, 1961
[13] Progr. Colloid Polym. Sci., 71 (1985), p. 66
[14] Chem. Phys. Lett. (2001), p. 339
[15] Phys. Rev. B, 40 (1989), p. 7953
[16] J. Phys. Lett. (France), 43 (1982), p. L625
[17] Europhys. Lett., 6 (1988), p. 245
[18] J. Chem. Phys., 29 (1958), p. 611
[19] Biophys. J., 69 (1995), p. 242
[20] , Biological Magnetic Resonance, vol. 17, Kluwer Academic/Plenum, New York, 1999 (p. 419)
[21] J. Mol. Biol., 33 (1968), p. 491
[22] L'eau et Les Systèmes Biologiques, 246 (1976), p. 53
- Markers of low field NMR relaxation features of tissues, Scientific Reports, Volume 14 (2024) no. 1 | DOI:10.1038/s41598-024-74055-7
- Dynamical properties of solid and hydrated collagen: Insight from nuclear magnetic resonance relaxometry, The Journal of Chemical Physics, Volume 160 (2024) no. 16 | DOI:10.1063/5.0191409
- Diffusion of Water Molecules on the Surface of Silica Nanoparticles─Insights from Nuclear Magnetic Resonance Relaxometry, The Journal of Physical Chemistry B, Volume 128 (2024) no. 6, p. 1535 | DOI:10.1021/acs.jpcb.3c06451
- Water Dynamics in Highly Concentrated Protein Systems—Insight from Nuclear Magnetic Resonance Relaxometry, International Journal of Molecular Sciences, Volume 24 (2023) no. 4, p. 4093 | DOI:10.3390/ijms24044093
- Dynamics of Arabic gum aqueous solutions as revealed by NMR relaxometry, Journal of the Science of Food and Agriculture, Volume 102 (2022) no. 13, p. 5808 | DOI:10.1002/jsfa.11930
- Theory of chemical exchange saturation transfer MRI in the context of different magnetic fields, NMR in Biomedicine, Volume 35 (2022) no. 11 | DOI:10.1002/nbm.4789
- Recent development in 1H NMR relaxometry, Volume 99 (2020), p. 119 | DOI:10.1016/bs.arnmr.2019.10.001
- Fast field-cycling magnetic resonance detection of intracellular ultra-small iron oxide particles in vitro: Proof-of-concept, Journal of Magnetic Resonance, Volume 313 (2020), p. 106722 | DOI:10.1016/j.jmr.2020.106722
- Slow dynamics of solid proteins – Nuclear magnetic resonance relaxometry versus dielectric spectroscopy, Journal of Magnetic Resonance, Volume 314 (2020), p. 106721 | DOI:10.1016/j.jmr.2020.106721
- Towards applying NMR relaxometry as a diagnostic tool for bone and soft tissue sarcomas: a pilot study, Scientific Reports, Volume 10 (2020) no. 1 | DOI:10.1038/s41598-020-71067-x
- Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry, Biomolecules, Volume 9 (2019) no. 11, p. 652 | DOI:10.3390/biom9110652
- A whole-body Fast Field-Cycling scanner for clinical molecular imaging studies, Scientific Reports, Volume 9 (2019) no. 1 | DOI:10.1038/s41598-019-46648-0
- NMR studies of hydration in low water content biopolymer systems, Magnetic Resonance in Chemistry, Volume 49 (2011) no. S1 | DOI:10.1002/mrc.2848
- Water and Backbone Dynamics in a Hydrated Protein, Biophysical Journal, Volume 98 (2010) no. 1, p. 138 | DOI:10.1016/j.bpj.2009.09.054
- Proton longitudinal relaxation coupling in dynamically heterogeneous soft systems, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 55 (2009) no. 4, p. 296 | DOI:10.1016/j.pnmrs.2009.06.003
- Nuclear magnetic relaxation dispersion study of the dynamics in solid homopolypeptides, Biopolymers, Volume 86 (2007) no. 2, p. 148 | DOI:10.1002/bip.20714
- Relaxation of protons by radicals in rotationally immobilized proteins, Journal of Magnetic Resonance, Volume 186 (2007) no. 2, p. 176 | DOI:10.1016/j.jmr.2007.02.006
- The magnetic field and temperature dependences of proton spin-lattice relaxation in proteins, The Journal of Chemical Physics, Volume 126 (2007) no. 17 | DOI:10.1063/1.2727464
- Structural and Dynamical Examination of the Low-Temperature Glass Transition in Serum Albumin, Biophysical Journal, Volume 91 (2006) no. 10, p. 3841 | DOI:10.1529/biophysj.106.090126
- Paramagnetic relaxation of protons in rotationally immobilized proteins, The Journal of Chemical Physics, Volume 124 (2006) no. 13 | DOI:10.1063/1.2183311
- MAGNETIC RELAXATION DISPERSION IN POROUS AND DYNAMICALLY HETEROGENEOUS MATERIALS, Volume 57 (2005), p. 293 | DOI:10.1016/s0898-8838(05)57006-5
- Noise and Functional Protein Dynamics, Biophysical Journal, Volume 89 (2005) no. 4, p. 2685 | DOI:10.1529/biophysj.105.060178
- Nuclear magnetic resonance and spin relaxation in biological systems, Magnetic Resonance Imaging, Volume 23 (2005) no. 2, p. 167 | DOI:10.1016/j.mri.2004.11.026
Cité par 23 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier