Nuclear Magnetic Resonance has revolutionized modern science by its precision, selectivity and non-envasiveness. From complicated biomolecules to materials, from living organisms to nanometric particles, Magnetic Resonance Imaging and Spectroscopy have provided a wealth of invaluable information. Those studies take place in the laboratory, since they require strong and extremely homogeneous superconducting magnets and this represents a major limitation for the technique. Furthermore, the size of the object or subject to study is limited since it has to fit inside the bore of the magnet. Efforts to alleviate those problems lead to the recent development of portable magnetic resonance systems. Their use remained, however, mainly qualitative, since spectroscopic information could not be recovered. We have introduced recently an approach to regain this lost spectral information even in the presence of inhomogeneous magnetic fields. Our approach is based on the matching between the effect of the radio-frequency field and the effect of the static magnetic field. Several practical implementations will be reviewed and put in perspective for their applicability and efficiency in ex-situ NMR.
. La Résonance Magnétique Nucléaire a révolutionné la science moderne par sa précision, par sa sélectivité et par son caractère non invasif. L'Imagerie par Résonance Magnétique et la Spectroscopie ont permis en effet l'obtention d'un grand nombre d'information pour des domaines aussi variés que les biomolécules, les matériaux, les organismes vivants ou les particules nanométriques. Une limitation majeure existe pourtant : toutes ces études ont lieu au laboratoire, car elles requièrent des aimants supraconducteurs très intenses et extrèmement homogènes. De plus, la taille maximale de l'object ou du sujet à étudier est limitée par les dimensions de l'aimant qui le contiendra. Les efforts pour contourner ces limitations ont conduit aux développements de systèmes de Résonance Magnétique portables. Leur utilisation est restée cependant principalement qualitative car l'information spectroscopique ne pouvait pas être obtenue. Nous avons introduit récemment une approche qui permet d'accéder à cette information spectrale même en présence de champ magnétique inhomogène. Elle est basée sur la corrélation entre le champ de radiofréquence effectif et le champs magnétique statique. Nous rapportons ici plusieurs implémentations pratiques de cette approche en discutant leurs perspectives en termes d'applicabilité et d'efficacité pour la RMN ex-situ.
Mots-clés : RMN ex-situ, Champs inhomogènes, Rotations Z, Champs corrélés, Impulsions adiabatiques, Impulsions composites, Détecteurs de RMN, Aimants ouverts, Système RMN à un coté
Dimitris Sakellariou 1, 2; Carlos A. Meriles 1; Alexander Pines 1
@article{CRPHYS_2004__5_3_337_0, author = {Dimitris Sakellariou and Carlos A. Meriles and Alexander Pines}, title = {Advances in ex-situ {Nuclear} {Magnetic} {Resonance}}, journal = {Comptes Rendus. Physique}, pages = {337--347}, publisher = {Elsevier}, volume = {5}, number = {3}, year = {2004}, doi = {10.1016/j.crhy.2004.03.016}, language = {en}, }
Dimitris Sakellariou; Carlos A. Meriles; Alexander Pines. Advances in ex-situ Nuclear Magnetic Resonance. Comptes Rendus. Physique, Highly polarized nuclear spin systems and dipolar interactions in NMR, Volume 5 (2004) no. 3, pp. 337-347. doi : 10.1016/j.crhy.2004.03.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.03.016/
[1] Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, 1989
[2] The Encyclopedia of NMR, Wiley, London, 1997
[3] Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, Oxford, England, 1994
[4] Approach to high-resolution ex situ NMR spectroscopy, Science, Volume 293 (2001), pp. 82-85
[5] High-resolution NMR spectra in inhomogeneous magnetic fields: application of total spin coherence transfer echoes, J. Am. Chem. Soc., Volume 103 (1981), pp. 3578-3579
[6] High-resolution NMR in inhomogeneous fields, Chem. Phys. Lett., Volume 277 (1997), pp. 367-374
[7] High-resolution, GHz NMR in unstable magnetic fields, Phys. Rev. Lett., Volume 85 (2000), pp. 3732-3735
[8] Multiple-quantum nuclear magnetic resonance spectroscopy, Science, Volume 233 (1986), pp. 525-531
[9] Resolution enhancement in heteronuclear two-dimensional spectroscopy by realignment of coherence transfer echoes, J. Magn. Reson., Volume 46 (1982), pp. 306-318
[10] A SHARP method for high-resolution NMR of heteronuclear spin systems in inhomogeneous fields, J. Magn. Reson., Volume 63 (1985), pp. 431-437
[11] High-resolution NMR spectra of disordered solids, J. Am. Chem. Soc., Volume 125 (2003), pp. 4376-4380
[12] Homogeneous NMR spectra in inhomogeneous fields, Science, Volume 272 (1996), pp. 92-96
[13] Multiple spin echo generation by gradients of the radio frequency amplitude: two-dimensional nutation spectroscopy and multiple rotary echoes, J. Chem. Phys., Volume 111 (1999), pp. 6501-6509
[14] Numerical studies of intermolecular multiple quantum coherences: high-resolution NMR in inhomoeneous fields and contrast enhancement in MRI, J. Magn. Reson., Volume 146 (2000), pp. 1-13
[15] Intermolecular multiple quantum coherences in liquids, Concepts in Magnetic Resonance, Volume 12 (2000), pp. 396-409
[16] Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR, Science, Volume 262 (1993), pp. 2005-2009
[17] Quantum treatment of the effects of dipole–dipole interactions in liquid nuclear magnetic resonance, J. Chem. Phys., Volume 105 (1996), pp. 874-900
[18] Remote (inside-out) NMR II. Sensitivity of detection for external samples, J. Magn. Reson., Volume 41 (1980), pp. 406-410
[19] Remote (inside-out) NMR III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field, J. Magn. Reson., Volume 41 (1980), pp. 411-421
[20] Novel NMR apparatus for investigating an external sample, J. Magn. Reson., Volume 97 (1992), pp. 466-485
[21] The NMR MOUSE, a mobile universal surface explorer, J. Magn. Reson. A, Volume 122 (1996), pp. 104-109
[22] The NMR-MOUSE: construction, excitation and applications, Magn. Reson. Imaging, Volume 16 (1998), pp. 479-484
[23] Nuclear magnetic resonance in inhomogeneous magnetic fields, J. Magn. Reson., Volume 145 (2000), pp. 246-258
[24] Spin echoes, Phys. Rev., Volume 80 (1950), pp. 580-594
[25] Effects of diffusion on free precession in nuclear magnetic resonance experiments, Phys. Rev., Volume 94 (1954), pp. 630-638
[26] Analysis of polymer materials by surface NMR via the MOUSE, J. Magn. Reson., Volume 130 (1998), pp. 1-7
[27] Characterization of cross-link density in technical elastomers by the NMR-MOUSE, Solid State Nuclear Magn. Reson., Volume 12 (1998), pp. 183-190
[28] One-dimensional imaging with a palm-size probe, J. Magn. Reson., Volume 144 (2000), pp. 200-206
[29] Anisotropy in tendon investigated in vivo by a portable NMR scanner, the NMR-MOUSE, J. Magn. Reson., Volume 144 (2000), pp. 195-199
[30] Two dimensional high-resolution NMR spectra in matched B0 and B1 field gradients, J. Magn. Reson., Volume 156 (2002), pp. 146-151
[31] High-resolution NMR spectroscopy in inhomogeneous B0 and B1 fields by two-dimensional correlation, Chem. Phys. Lett., Volume 381 (2003), pp. 634-641
[32] Composite z-pulses, J. Magn. Reson., Volume 44 (1981), p. 409
[33] Nuclear induction in inhomogeneous fields, Phys. Rev., Volume 98 (1955), pp. 1105-1111
[34] The edge echo, J. Magn. Reson., Volume 43 (1981), pp. 103-109
[35] Multiple echoes initiated by a single radio frequency pulse in NMR, Chem. Phys. Lett., Volume 296 (1998), pp. 466-470
[36] Two-pulse nutation echoes generated by gradients of the radiofrequency amplitude and of the main magnetic field, J. Magn. Reson., Volume 144 (2000), pp. 45-52
[37] The nutation spin echo and its use for localized NMR, J. Magn. Reson., Volume 146 (2000), pp. 43-48
[38] Variable rotation composite pulses for high resolution nuclear magnetic resonance using inhomogeneous magnetic and radio-frequency fields, Chem. Phys. Lett., Volume 363 (2002), pp. 25-33
[39] The return of the frequency sweep: designing adiabatic pulses for contemporary NMR, J. Magn. Reson., Volume 153 (2001), pp. 155-177
[40] Adiabatic pulses, NMR in Biomedicine, Volume 10 (1997), pp. 423-434
[41] Adiabatic rf pulses: applications to in vivo NMR, Concepts Magn. Reson., Volume 9 (1997), pp. 247-268
[42] Broadband phase modulation by adiabatic pulses, J. Magn. Reson., Volume 164 (2003), pp. 177-181
[43] Adjustable, broadband, selective excitation with uniform phase, J. Magn. Reson., Volume 155 (2002), pp. 131-139
[44] V. Demas, D. Sakellariou, C. Meriles, S. Han, J. Reimer, A. Pines, 3D phase-encoded chemical shift MRI in the presence of inhomogeneous fields, J. Magn. Reson. (2004), submitted for publication
[45] D. Topgaard, A. Pines, Self-diffusion measurements with chemical shift resolution in steady magnetic field gradients, J. Magn. Reson. (2004), submitted for publication
[46] Broadband population inversion by phase modulated pulses, J. Chem. Phys., Volume 79 (1983), pp. 4643-4644
[47] Broadband and adiabatic inversion of a two-level system by phase modulated pulses, Phys. Rev. A, Volume 32 (1985), pp. 3435-3447
Cited by Sources:
Comments - Policy