Comptes Rendus
Fracture of the winter sea ice cover on the Arctic ocean
[Fracture de la banquise en hiver]
Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 753-767.

On propose une interprétation du comportement fragile de la banquise (en hiver) en termes de compétition entre extension d'une fracture à partir de concentrateurs de contraintes, et relaxation de ces concentrations de contrainte par fluage. On identifie les zones de glissement intense qui s'entrelacent à la surface de la banquise comme étant des failles cisaillantes de Coulomb, et on modélise numériquement le développement de ces failles en termes de friction effective indépendante de l'échelle spatiale considérée.

We account for the brittle behavior of the winter sea ice cover in terms of the competition between creep relaxation and crack extension at stress concentrators; identify as Coulombic shear faults sliding lineaments that lace through the cover; and numerically model fault development in terms of scale-independent effective friction.

Publié le :
DOI : 10.1016/j.crhy.2004.06.001
Keywords: Winter sea ice cover, Creep relaxation, Crack extension, Coulombic shear faults
Mot clés : Banquise, Relaxation de ces concentrations de contrainte, Extension d'une fracture, Failles cisaillantes de Coulomb
Erland M. Schulson 1 ; William D. Hibler 2

1 Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
2 International Arctic Research Center, University of Alaska, Fairbanks, AK 99775, USA
@article{CRPHYS_2004__5_7_753_0,
     author = {Erland M. Schulson and William D. Hibler},
     title = {Fracture of the winter sea ice cover on the {Arctic} ocean},
     journal = {Comptes Rendus. Physique},
     pages = {753--767},
     publisher = {Elsevier},
     volume = {5},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crhy.2004.06.001},
     language = {en},
}
TY  - JOUR
AU  - Erland M. Schulson
AU  - William D. Hibler
TI  - Fracture of the winter sea ice cover on the Arctic ocean
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 753
EP  - 767
VL  - 5
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.06.001
LA  - en
ID  - CRPHYS_2004__5_7_753_0
ER  - 
%0 Journal Article
%A Erland M. Schulson
%A William D. Hibler
%T Fracture of the winter sea ice cover on the Arctic ocean
%J Comptes Rendus. Physique
%D 2004
%P 753-767
%V 5
%N 7
%I Elsevier
%R 10.1016/j.crhy.2004.06.001
%G en
%F CRPHYS_2004__5_7_753_0
Erland M. Schulson; William D. Hibler. Fracture of the winter sea ice cover on the Arctic ocean. Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 753-767. doi : 10.1016/j.crhy.2004.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.06.001/

[1] W.D. Hibler Modeling the dynamic response of sea ice (J. Bamber, ed.), Mass Balance of the Cryosphere, Cambridge University Press, Cambridge, 2003

[2] G.A. Maykut Large-scale heat exchange and ice production in the central Arctic, J. Geophys. Res, Volume 87 (1982), pp. 7971-7984

[3] W.B. Tucker et al. Evidence for rapid thinning of sea ice in the western Arctic ocean at the end of the 1980s, Geophys. Res. Lett, Volume 28 (2001) no. 14, pp. 2851-2854

[4] R. Kwok Deformation of the Arctic ocean sea ice cover between November 1996 and April 1997: a qualitative survey (H.H. Shen, ed.), Scaling Laws in Ice Mechanics, Kluwer Academic, 2001, pp. 315-322

[5] E.M. Schulson The brittle compressive fracture of ice, Acta Metall. Mater, Volume 38 (1990) no. 10, pp. 1963-1976

[6] E.M. Schulson Brittle failure of ice, Engrg. Fract. Mech, Volume 68 (2001) no. 17/18, pp. 1839-1887

[7] R.J. Evans; N. Untersteiner Thermal cracks in floating ice sheets, J. Geophys. Res, Volume 76 (1971) no. 3, pp. 694-703

[8] P. Wadhams; N.R. Davis Further evidence of ice thinning in the Arctic ocean, Geophys. Res. Lett, Volume 27 (2000) no. 24, pp. 3973-3975

[9] S. Laxon; N. Peacock; D. Smith High interannual variability of sea ice thickness in the Arctic region, Nature, Volume 425 (2003) no. 6961, pp. 947-950

[10] J.A. Richter-Menge; S.L. McNutt; J.E. Overland; R. Kwok Relating arctic pack ice stress and deformation under winter conditions, J. Geophys. Res, Volume 107 (2002) no. C10 (art. 8040)

[11] J.A. Richter-Menge; B.C. Elder Characteristics of pack ice stress in the Alaskas Beaufort Sea, J. Geophys. Res, Volume 103 (1998) no. C10, pp. 21817-21829

[12] W.F. Brace; E.G. Bombolakis A note of brittle crack growth in compression, J. Geophys. Res, Volume 68 (1963), p. 3709

[13] F.A. McClintock; J.B. Walsh 4th U.S. National Congress of Applied Mechanics, 1963

[14] H. Horii; S. Nemat-Nasser Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res, Volume 90 (1985), pp. 3105-3125

[15] M.F. Ashby; S.D. Hallam The failure of brittle solids containing small cracks under compressive stress states, Acta Metall, Volume 34 (1986) no. 3, pp. 497-510

[16] M.L. Cooke Fracture localization along faults with spatially varying friction, J. Geophys. Res, Volume 102 (1997) no. B10, pp. 24425-24434

[17] H. Riedel, J.R. Rice, Tensile Cracks in Creeping Solids ASTM-STP 7700 (1980) 112–130

[18] R.A. Batto; E.M. Schulson On the ductile-to-brittle transition in ice under compression, Acta Metall. Mater, Volume 41 (1993) no. 7, pp. 2219-2225

[19] E.M. Schulson; O.Y. Nickolayev Failure of columnar saline ice under biaxial compression: failure envelopes and the brittle-to-ductile transition, J. Geophys. Res, Volume 100 (1995) no. B11, pp. 22383-22400

[20] E.M. Schulson; S.E. Buck The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression, Acta Metall. Mater, Volume 43 (1995) no. 10, pp. 3661-3668

[21] N.P. Cannon; E.M. Schulson; T.R. Smith; H.J. Frost Wing cracks and brittle compressive fracture, Acta Metall. Mater, Volume 38 (1990) no. 10, pp. 1955-1962

[22] C.E. Renshaw; E.M. Schulson Universal behavior in compressive failure of brittle materials, Nature, Volume 412 (2001) no. 6850, pp. 897-900

[23] T.J.O. Sanderson Ice Mechanics: Risks to Offshore Structures, Graham & Trotman, London, 1988

[24] J.P. Dempsey Scale Effects on the Fracture of Ice, The Johannes Weertman Symposium, The Minerals, Metals and Materials Society, Anaheim, CA, 1996

[25] F.E. Kennedy; E.M. Schulson; D. Jones Friction of ice on ice at low sliding velocities, Philos. Mag. A, Volume 80 (2000) no. 5, pp. 1093-1110

[26] D. Marsan, H. Stern, R. Lindsay, J. Weiss, Scale dependence and localization of the deformation of Arctic sea ice, Phys. Rev. Lett. (2004), submitted for publication

[27] S. Qi; E.M. Schulson The effect of temperature on the ductile-to-brittle transition in columnar ice, 14th International Symposium on Ice, Balkema, Clarkson University, Potsdam, New York, 1998

[28] H.J. Frost; M.F. Ashby Deformation Mechanisms Maps, Permagon Press, Oxford, 1982

[29] C. Shearwood; R.W. Whitworth The velocity of dislocations in ice, Philos. Mag. A, Volume 64 (1991) no. 2, pp. 289-302

[30] J.W. Glen The effect of hydrogen disorder on dislocation movement and plastic deformation in ice, Phys. Condens. Mater, Volume 7 (1968), pp. 43-51

[31] J.R. Marko; R.E. Thomson Rectilinear leads and internal motions in the ice pack of the Western Arctic ocean, J. Geophys. Res, Volume 82 (1977), pp. 979-987

[32] B. Erlingsson Two-dimensional deformation patterns in sea ice, J. Glaciology (1988) no. 34, pp. 301-308

[33] B.A. Walter; J.E. Overland The response of lead patterns in the Beaufort sea to storm-scale wind forcing, Ann. Glaciology, Volume 17 (1993), pp. 219-226

[34] R. Kwok et al. Determination of ice age using Lagrangian observations of ice motion, IEEE Trans. Geosci. Remote Sens, Volume 33 (1995) no. 2, pp. 392-400

[35] R.W. Lindsay; D.A. Rothrock Arctic sea-ice leads from advanced very high-resolution radiometer images, J. Geophys. Res. – Oceans, Volume 100 (1995) no. C3, pp. 4533-4544

[36] J.E. Overland et al. Hierachy and sea ice mechanics: a case study from the Beaufort Sea, J. Geophys. Res, Volume 100 (1995) no. C3, pp. 4559-4571

[37] B.A. Walter; J.E. Overland; P. Turet A comparison of satellite-derived and aircraft-measured regional surface sinsible heat fluxes over the Beaufort Sea, J. Geophys. Res, Volume 100 (1995), pp. 4584-4591

[38] R.E. Kwok The RADARSAT geophysical processor system (R. Kwok, ed.), Analysis of SAR Data of the Polar Oceans, Springer-Verlag, Berlin, 1998, pp. 235-257

[39] H.L. Stern; D.A. Rothrock Open water production in Arctic sea ice: satellite measurements and model parameterizations, J. Geophys. Res, Volume 100 (1995) no. C10, pp. 20601-20612

[40] J.E. Overland et al. Arctic sea ice as a granular plastic, J. Geophys. Res. – Oceans, Volume 103 (1998) no. C10, pp. 21845-21867

[41] E.M. Schulson, Compressive shear faults within the Arctic sea ice cover on scales large and small. J. Geophys. Res. (2004), in press

[42] D.K. Perovich et al. Year on the ice gives climate insights, EOS, Trans. Amer. Geophys. Union, Volume 481 (1999) no. 80, pp. 485-486

[43] E.M. Schulson; D. Iliescu; C.E. Renshaw On the initiation of shear faults during brittle compressive failure: a new mechanism, J. Geophys. Res, Volume 104 (1999) no. B1, pp. 695-705

[44] E.M. Schulson; W.D. Hibler The fracture of ice on scales large and small: Arctic leads and wing cracks, J. Glaciology, Volume 37 (1991) no. 127, pp. 319-323

[45] J. Weiss Fracture and fragmentation of ice: a fractral analysis of scale invariance, Engrg. Fracture Mech, Volume 68 (2001) no. 17–18, pp. 1975-2012

[46] J. Weiss Scaling of fracture and faulting of ice on earth, Surv. Geophys, Volume 24 (2003), pp. 185-227

[47] S.L. McNutt; J.E. Overland Spatial hierarchy in Arctic sea ice dynamics, Tellus Series A – Dynamic Meteorology and Oceanography, Volume 55 (2003) no. 2, pp. 181-191

[48] J.E. Overland; B.A. Walter; T.B. Curtin; P. Turet Hierarchy and sea ice mechanics: a case study from the Beaufort sea, J. Geophys. Res, Volume 100 (1995) no. C3, pp. 4559-4571

[49] R.V. O'Neill et al. A Hierarchical Concept of Ecosystems, Princeton University Press, Princeton, NJ, 1986

[50] E.M. Schulson Compressive shear faulting in ice: plastic vs. Coulombic faults, Acta Mater (2002) no. 50, pp. 3415-3424

[51] W.D. Hibler; E.M. Schulson On modeling the anisotropic failure and flow of flawed sea ice, J. Geophys. Res, Volume 105 (2000) no. C7, pp. 17105-17120

[52] J.K. Hutchings; W.D. Hibler Modelling sea ice deformation with a viscous-plastic isotropic rheology (P. Langhorne, ed.), Ice in the Environment, University of Otago Press, Dunedin, New Zealand, 2003, pp. 358-366

[53] Y. Aksenov; W.D. Hibler Failure propagation effects in an anisotropic sea ice dynamic models (H.H. Shen, ed.), Scaling Laws in Ice Mechanics, Kluwer Academic, Dordrecht, 2001

[54] R. Kwok; G.F. Cunningham; W.D. Hibler Sub-daily sea ice motion and deformation from RADARSAT observations, Geophys. Res. Lett, Volume 30 (2003), p. 2218

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Scale properties of sea ice deformation and fracturing

Jérôme Weiss; David Marsan

C. R. Phys (2004)