We account for the brittle behavior of the winter sea ice cover in terms of the competition between creep relaxation and crack extension at stress concentrators; identify as Coulombic shear faults sliding lineaments that lace through the cover; and numerically model fault development in terms of scale-independent effective friction.
On propose une interprétation du comportement fragile de la banquise (en hiver) en termes de compétition entre extension d'une fracture à partir de concentrateurs de contraintes, et relaxation de ces concentrations de contrainte par fluage. On identifie les zones de glissement intense qui s'entrelacent à la surface de la banquise comme étant des failles cisaillantes de Coulomb, et on modélise numériquement le développement de ces failles en termes de friction effective indépendante de l'échelle spatiale considérée.
Mots-clés : Banquise, Relaxation de ces concentrations de contrainte, Extension d'une fracture, Failles cisaillantes de Coulomb
Erland M. Schulson 1; William D. Hibler 2
@article{CRPHYS_2004__5_7_753_0, author = {Erland M. Schulson and William D. Hibler}, title = {Fracture of the winter sea ice cover on the {Arctic} ocean}, journal = {Comptes Rendus. Physique}, pages = {753--767}, publisher = {Elsevier}, volume = {5}, number = {7}, year = {2004}, doi = {10.1016/j.crhy.2004.06.001}, language = {en}, }
Erland M. Schulson; William D. Hibler. Fracture of the winter sea ice cover on the Arctic ocean. Comptes Rendus. Physique, Ice: from dislocations to icy satellites, Volume 5 (2004) no. 7, pp. 753-767. doi : 10.1016/j.crhy.2004.06.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.06.001/
[1] Modeling the dynamic response of sea ice (J. Bamber, ed.), Mass Balance of the Cryosphere, Cambridge University Press, Cambridge, 2003
[2] Large-scale heat exchange and ice production in the central Arctic, J. Geophys. Res, Volume 87 (1982), pp. 7971-7984
[3] et al. Evidence for rapid thinning of sea ice in the western Arctic ocean at the end of the 1980s, Geophys. Res. Lett, Volume 28 (2001) no. 14, pp. 2851-2854
[4] Deformation of the Arctic ocean sea ice cover between November 1996 and April 1997: a qualitative survey (H.H. Shen, ed.), Scaling Laws in Ice Mechanics, Kluwer Academic, 2001, pp. 315-322
[5] The brittle compressive fracture of ice, Acta Metall. Mater, Volume 38 (1990) no. 10, pp. 1963-1976
[6] Brittle failure of ice, Engrg. Fract. Mech, Volume 68 (2001) no. 17/18, pp. 1839-1887
[7] Thermal cracks in floating ice sheets, J. Geophys. Res, Volume 76 (1971) no. 3, pp. 694-703
[8] Further evidence of ice thinning in the Arctic ocean, Geophys. Res. Lett, Volume 27 (2000) no. 24, pp. 3973-3975
[9] High interannual variability of sea ice thickness in the Arctic region, Nature, Volume 425 (2003) no. 6961, pp. 947-950
[10] Relating arctic pack ice stress and deformation under winter conditions, J. Geophys. Res, Volume 107 (2002) no. C10 (art. 8040)
[11] Characteristics of pack ice stress in the Alaskas Beaufort Sea, J. Geophys. Res, Volume 103 (1998) no. C10, pp. 21817-21829
[12] A note of brittle crack growth in compression, J. Geophys. Res, Volume 68 (1963), p. 3709
[13] 4th U.S. National Congress of Applied Mechanics, 1963
[14] Compression-induced microcrack growth in brittle solids: axial splitting and shear failure, J. Geophys. Res, Volume 90 (1985), pp. 3105-3125
[15] The failure of brittle solids containing small cracks under compressive stress states, Acta Metall, Volume 34 (1986) no. 3, pp. 497-510
[16] Fracture localization along faults with spatially varying friction, J. Geophys. Res, Volume 102 (1997) no. B10, pp. 24425-24434
[17] H. Riedel, J.R. Rice, Tensile Cracks in Creeping Solids ASTM-STP 7700 (1980) 112–130
[18] On the ductile-to-brittle transition in ice under compression, Acta Metall. Mater, Volume 41 (1993) no. 7, pp. 2219-2225
[19] Failure of columnar saline ice under biaxial compression: failure envelopes and the brittle-to-ductile transition, J. Geophys. Res, Volume 100 (1995) no. B11, pp. 22383-22400
[20] The ductile-to-brittle transition and ductile failure envelopes of orthotropic ice under biaxial compression, Acta Metall. Mater, Volume 43 (1995) no. 10, pp. 3661-3668
[21] Wing cracks and brittle compressive fracture, Acta Metall. Mater, Volume 38 (1990) no. 10, pp. 1955-1962
[22] Universal behavior in compressive failure of brittle materials, Nature, Volume 412 (2001) no. 6850, pp. 897-900
[23] Ice Mechanics: Risks to Offshore Structures, Graham & Trotman, London, 1988
[24] Scale Effects on the Fracture of Ice, The Johannes Weertman Symposium, The Minerals, Metals and Materials Society, Anaheim, CA, 1996
[25] Friction of ice on ice at low sliding velocities, Philos. Mag. A, Volume 80 (2000) no. 5, pp. 1093-1110
[26] D. Marsan, H. Stern, R. Lindsay, J. Weiss, Scale dependence and localization of the deformation of Arctic sea ice, Phys. Rev. Lett. (2004), submitted for publication
[27] The effect of temperature on the ductile-to-brittle transition in columnar ice, 14th International Symposium on Ice, Balkema, Clarkson University, Potsdam, New York, 1998
[28] Deformation Mechanisms Maps, Permagon Press, Oxford, 1982
[29] The velocity of dislocations in ice, Philos. Mag. A, Volume 64 (1991) no. 2, pp. 289-302
[30] The effect of hydrogen disorder on dislocation movement and plastic deformation in ice, Phys. Condens. Mater, Volume 7 (1968), pp. 43-51
[31] Rectilinear leads and internal motions in the ice pack of the Western Arctic ocean, J. Geophys. Res, Volume 82 (1977), pp. 979-987
[32] Two-dimensional deformation patterns in sea ice, J. Glaciology (1988) no. 34, pp. 301-308
[33] The response of lead patterns in the Beaufort sea to storm-scale wind forcing, Ann. Glaciology, Volume 17 (1993), pp. 219-226
[34] et al. Determination of ice age using Lagrangian observations of ice motion, IEEE Trans. Geosci. Remote Sens, Volume 33 (1995) no. 2, pp. 392-400
[35] Arctic sea-ice leads from advanced very high-resolution radiometer images, J. Geophys. Res. – Oceans, Volume 100 (1995) no. C3, pp. 4533-4544
[36] et al. Hierachy and sea ice mechanics: a case study from the Beaufort Sea, J. Geophys. Res, Volume 100 (1995) no. C3, pp. 4559-4571
[37] A comparison of satellite-derived and aircraft-measured regional surface sinsible heat fluxes over the Beaufort Sea, J. Geophys. Res, Volume 100 (1995), pp. 4584-4591
[38] The RADARSAT geophysical processor system (R. Kwok, ed.), Analysis of SAR Data of the Polar Oceans, Springer-Verlag, Berlin, 1998, pp. 235-257
[39] Open water production in Arctic sea ice: satellite measurements and model parameterizations, J. Geophys. Res, Volume 100 (1995) no. C10, pp. 20601-20612
[40] et al. Arctic sea ice as a granular plastic, J. Geophys. Res. – Oceans, Volume 103 (1998) no. C10, pp. 21845-21867
[41] E.M. Schulson, Compressive shear faults within the Arctic sea ice cover on scales large and small. J. Geophys. Res. (2004), in press
[42] et al. Year on the ice gives climate insights, EOS, Trans. Amer. Geophys. Union, Volume 481 (1999) no. 80, pp. 485-486
[43] On the initiation of shear faults during brittle compressive failure: a new mechanism, J. Geophys. Res, Volume 104 (1999) no. B1, pp. 695-705
[44] The fracture of ice on scales large and small: Arctic leads and wing cracks, J. Glaciology, Volume 37 (1991) no. 127, pp. 319-323
[45] Fracture and fragmentation of ice: a fractral analysis of scale invariance, Engrg. Fracture Mech, Volume 68 (2001) no. 17–18, pp. 1975-2012
[46] Scaling of fracture and faulting of ice on earth, Surv. Geophys, Volume 24 (2003), pp. 185-227
[47] Spatial hierarchy in Arctic sea ice dynamics, Tellus Series A – Dynamic Meteorology and Oceanography, Volume 55 (2003) no. 2, pp. 181-191
[48] Hierarchy and sea ice mechanics: a case study from the Beaufort sea, J. Geophys. Res, Volume 100 (1995) no. C3, pp. 4559-4571
[49] et al. A Hierarchical Concept of Ecosystems, Princeton University Press, Princeton, NJ, 1986
[50] Compressive shear faulting in ice: plastic vs. Coulombic faults, Acta Mater (2002) no. 50, pp. 3415-3424
[51] On modeling the anisotropic failure and flow of flawed sea ice, J. Geophys. Res, Volume 105 (2000) no. C7, pp. 17105-17120
[52] Modelling sea ice deformation with a viscous-plastic isotropic rheology (P. Langhorne, ed.), Ice in the Environment, University of Otago Press, Dunedin, New Zealand, 2003, pp. 358-366
[53] Failure propagation effects in an anisotropic sea ice dynamic models (H.H. Shen, ed.), Scaling Laws in Ice Mechanics, Kluwer Academic, Dordrecht, 2001
[54] Sub-daily sea ice motion and deformation from RADARSAT observations, Geophys. Res. Lett, Volume 30 (2003), p. 2218
Cited by Sources:
Comments - Policy