Comptes Rendus
Internal structure and dynamics of the large icy satellites
[Structure interne et dynamique des grands satellites de glace.]
Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 769-780.

Les données magnétiques de la mission Galiléo sont compatibles avec l'existence d'un ocean à l'intérieur des grands satellites de glace de Jupiter. D'autre part, la tectonique d'Europe suggère l'existence de mouvements de convection dans la cryosphère de glace I. La viscosité de la glace est un paramètre clé pour modéliser l'évolution thermique et l'évolution orbitale de ces satellites. Grâce aux données de laboratoire et à celles obtenues sur les glaciers terrestres, ce papier montre que la dissipation de chaleur par effets de marée est si importante qu'elle permet d'expliquer la présence d'un océan à l'intérieur d'Europe. L'ammoniaque est un autre paramètre important car sa présence abaisse tellement la température de fusion des hydrates qu'un océan ne peut totalement cristalliser. Un modèle de structure interne est proposé pour Titan et cette prédiction sera confrontée aux données de la mission Cassini–Huygens qui est en orbite autour de Saturne depuis le 1 juillet 2004.

The magnetic data returned by the Galileo mission suggest that deep oceans are present within the icy Galilean satellites. In addition, tectonic features on Europa are consistent with models of subsolidus convection within the outer ice I layer. Ice viscosity is a key parameter for modeling the thermal and orbital evolution of these large satellites. Using laboratory experiments and glacier measurements, this article shows that tidal heating is a strong source of internal heating which may explain the presence of a deep ocean within Europa. Another key parameter is the composition of ice. The presence of ammonia, which is likely in Saturn's sub-nebula, decreases so much the melting point temperature of ice that it would inhibit the complete freezing of the ocean. Predictions for the internal structure of Titan are made and will be checked by the Cassini mission which started orbiting Saturn on 1st July 2004.

Publié le :
DOI : 10.1016/j.crhy.2004.08.001
Keywords: Icy satellites, Galileo mission, Cassini–Huygens mission, Titan, Ice viscosity
Mot clés : Satellites de glace, Mission Galiléo, Mission Cassini–Huygens, Titan, Viscosité des glaces
Christophe Sotin 1 ; Gabriel Tobie 1

1 Laboratoire de planétologie et géodynamique, UMR-CNRS 6112, faculté des sciences, 2, rue de la Houssinière, BP 92208, 44322 Nantes cedex 3, France
@article{CRPHYS_2004__5_7_769_0,
     author = {Christophe Sotin and Gabriel Tobie},
     title = {Internal structure and dynamics of the large icy satellites},
     journal = {Comptes Rendus. Physique},
     pages = {769--780},
     publisher = {Elsevier},
     volume = {5},
     number = {7},
     year = {2004},
     doi = {10.1016/j.crhy.2004.08.001},
     language = {en},
}
TY  - JOUR
AU  - Christophe Sotin
AU  - Gabriel Tobie
TI  - Internal structure and dynamics of the large icy satellites
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 769
EP  - 780
VL  - 5
IS  - 7
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.08.001
LA  - en
ID  - CRPHYS_2004__5_7_769_0
ER  - 
%0 Journal Article
%A Christophe Sotin
%A Gabriel Tobie
%T Internal structure and dynamics of the large icy satellites
%J Comptes Rendus. Physique
%D 2004
%P 769-780
%V 5
%N 7
%I Elsevier
%R 10.1016/j.crhy.2004.08.001
%G en
%F CRPHYS_2004__5_7_769_0
Christophe Sotin; Gabriel Tobie. Internal structure and dynamics of the large icy satellites. Comptes Rendus. Physique, Volume 5 (2004) no. 7, pp. 769-780. doi : 10.1016/j.crhy.2004.08.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.08.001/

[1] D. Gautier; T. Owen The composition of outer planet atmospheres (S.K. Atreya; J.B. Pollack; M.S. Matthews, eds.), Origin and Evolution of Planetary and Satellite Atmospheres (A89-43776 19-90), University of Arizona Press, Tucson, AZ, 1989, pp. 487-512

[2] W.B. Hubbard Structure and composition of giant planet interiors (S.K. Atreya; J.B. Pollack; M.S. Matthews, eds.), Origin and Evolution of Planetary and Satellite Atmospheres (A89-43776 19-90), University of Arizona Press, Tucson, AZ, 1989, pp. 539-563

[3] I. Mosqueira; P.R. Estrada Formation of the regular satellites of giant planets in an extended gaseous nebula I: subnebula model and accretion of satellites, Icarus, Volume 163 (2003), pp. 198-203

[4] O. Mousis; D. Gautier; D. Bockelée-Morvan An evolutionary turbulent model of Saturn's subnebula: Implications for the origin of the atmosphere of Titan, Icarus, Volume 156 (2002), pp. 162-175

[5] D.L. Matson; G.A. Ransford; T.V. Johnson Heat flow from Io(JI), J. Geophys. Res., Volume 86 (1981), pp. 1664-1672

[6] R.T. Pappalardo et al. Geologic evidence for solid-state convection in Europa's ice shell, Nature, Volume 391 (1998), pp. 365-368

[7] S.W. Squyres; R.T. Reynolds; P. Cassen Liquid water and resurfacing on Europa, Nature, Volume 301 (1983), pp. 225-226

[8] S.K. Croft Mimas: Tectonic structure and geologic history, NASA, Washington, Reports of Planetary Geology and Geophysics Program (1990), pp. 95-97

[9] J.S. Kargel; S. Pozio The volcanic and tectonic history of Enceladus, Icarus, Volume 119 (1996), pp. 385-404

[10] J. Lunine; D.J. Stevenson Clahtrates and ammonia hydrates at high pressure: application to the origin of methane on Titan, Icarus, Volume 70 (1987), pp. 61-77

[11] L.A. Soderblom; T.L. Becker; S.W. Kieffer; R.H. Brown; C.J. Hansen; T.V. Johnson Triton's geyser-like plumes – Discovery and basic characterization, Science, Volume 250 (1990), pp. 410-415

[12] J.I. Lunine; S.K. Atreya; J.B. Pollack Present state and chemical evolution of the atmospheres of Titan, Triton and Pluto (S.K. Atreya; J.B. Pollack; M.S. Matthews, eds.), Origin and Evolution of Planetary and Satellite Atmospheres (A89-43776 19-90), University of Arizona Press, Tucson, AZ, 1989, pp. 605-665

[13] A. Coradini; P. Cerroni; G. Magni; C. Federico Formation of the satellites of the outer solar system (S.K. Atreya; J.B. Pollack; M.S. Matthews, eds.), Sources of their Atmospheres in Origin and Evolution of Planetary and Satellite Atmospheres (A89-43776 19-90), University of Arizona Press, Tucson, AZ, 1989, pp. 723-762

[14] M.H. Carr et al. Evidence for a subsurface ocean on Europa, Nature, Volume 391 (1998), pp. 363-365

[15] K.K. Khurana; M.G. Kivelson; C.T. Russell Induced magnetic fields as evidence for subsurface ocean in Europa and Callisto, Nature, Volume 397 (1998), pp. 777-780

[16] R.T. Pappalardo et al. Does Europa have a subsurface ocean? Evaluation of the geological evidence, J. Geophys. Res., Volume 104 (1999), pp. 24015-24056

[17] M.G. Kivelson; K.K. Khurana; K. Krishan; C.T. Russell; M. Volwerk; R.J. Walker; C. Zimmer Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa, Science, Volume 289 (2000), pp. 1340-1343

[18] M.G. Kivelson; K.K. Khurana; M. Volwerk The permanent and inductive magnetic moments of Ganymede, Icarus, Volume 157 (2002), pp. 507-522

[19] C. Sotin; O. Grasset; S. Beauchesne Thermodynamic properties of high pressure ices: Implications for the dynamics and internal structure of large icy satellites (B. Schmitt et al., eds.), Solar System Ices, 1998, pp. 79-96

[20] P.C. Thomas; M.E. Davies; T.R. Colvin; J. Oberst; P. Schuster; G. Neukum; M.H. Carr; A. McEwen; G. Schubert; M.S.J. Belton The shape of Io from Galileo limb measurements, Icarus, Volume 135 (1998), pp. 175-180

[21] J.D. Anderson; E.L. Lau; W.L. Sjogren; G. Schubert; W.B. Moore Gravitational constraints on the internal structure of Ganymede, Nature, Volume 384 (1996), pp. 541-543

[22] J.D. Anderson; G. Schubert; R.A. Jacobson; E.L. Lau; W.B. Moore; W.L. Sjogren Europa's differentiated internal structure: inferences from four Galileo encounters, Science, Volume 281 (1998), pp. 2019-2022

[23] J.D. Anderson; R.A. Jacobson; T.P. McElrath; W.B. Moore; G. Schubert; P.C. Thomas Shape, mean radius, gravity field, and the interior structure of Callisto, Icarus, Volume 153 (2001), pp. 157-161

[24] F. Sohl; T. Spohn; D. Breuer; K. Nagel Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites, Icarus, Volume 157 (2002), pp. 104-119

[25] T. Spohn; G. Schubert Oceans in the icy Galilean satellites of Jupiter?, Icarus, Volume 161 (2003), pp. 456-467

[26] J.S. Kargel; J.Z. Kaye; J.W. Head; G.M. Marion; R. Sassen; J.K. Crowley; O.P. Ballesteros; S.A. Grant; D.L. Hogenboom Europa's crust and ocean: Origin, composition, and the prospects for life, Icarus, Volume 148 (2000), pp. 226-265

[27] D.J. Stevenson When Galileo met Ganymede, Nature, Volume 384 (1996), pp. 511-512

[28] K. Nagel; D. Breuer; T. Spohn A model for the interior structure, evolution and differentiation of Callisto, Icarus, Volume 169 (2004), pp. 402-412

[29] O. Grasset; C. Sotin; F. Deschamps On the internal structure and dynamics of Titan, Planet. Space Sci., Volume 48 (2000), pp. 617-636

[30] R.L. Kirk; D.J. Stevenson Thermal evolution of a differentiated Ganymede and implications for surface features, Icarus, Volume 69 (1987), pp. 91-134

[31] N. Rappaport; B. Bertotti; G. Giampieri; J.D. Anderson Doppler measurements of the quadrupole moments of Titan, Icarus, Volume 126 (1997), pp. 313-323

[32] G.J. Consolmagno; J.S. Lewis The evolution of icy satellite interiors and surfaces, Icarus, Volume 34 (1978), pp. 280-293

[33] G. Schubert; D.J. Stevenson; K. Ellsworth Internal structures of the Galilean satellites, Icarus, Volume 47 (1981), pp. 46-59

[34] A. Davaille; C. Jaupart Transient high-Rayleigh number thermal convection with large viscosity variations, J. Fluid Mech., Volume 253 (1993), pp. 141-166

[35] L.N. Moresi; V.S. Solomatov Numerical investigation of 2D convection with extremely large viscosity variations, Phys. Fluids, Volume 7 (1995), pp. 2154-2162

[36] O. Grasset; E.M. Parmentier Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity: implications for planetary thermal evolution, J. Geophys. Res., Volume 103 (1998), pp. 18171-18181

[37] C. Dumoulin; M.-P. Douin; L. Fleitout Heat transport in stagnant lid convection with temperature and pressure dependent Newtonian and non-Newtonian rheology, J. Geophys. Res., Volume 104 (1999), pp. 12759-12778

[38] F. Deschamps; C. Sotin Thermal convection in the outer shell of large icy, J. Geophys. Res., Volume 106 (2001), pp. 5107-5122

[39] C.C. Reese; V.S. Solomatov; L.-N. Moresi Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus, Icarus, Volume 139 (1999), pp. 67-80

[40] M. Manga; D. Weeraratne Experimental study of a non-Boussinesq Rayleigh–Bénard convection at high Rayleigh and Prandtl numbers, Phys. Fluid, Volume 11 (1999), pp. 2969-2976

[41] P. Cassen; R.T. Reynolds; S.J. Peale Is there liquid water on Europa, Geophys. Res. Lett., Volume 6 (1979), pp. 731-734

[42] J.-P. Poirier; L. Boloh; P. Chambon Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus, Volume 55 (1983), pp. 218-230

[43] F. Sohl; W.D. Sears; R.D. Lorenz Tidal dissipation on Titan, Icarus, Volume 115 (1995), pp. 278-294

[44] A.P. Showman; R. Malhotra Tidal evolution into the Laplace resonance and the resurfacing of Ganymede, Icarus, Volume 127 (1997), pp. 93-111

[45] G.W. Ojakangas; D.J. Stevenson Thermal state of an ice shell on Europa, Icarus, Volume 81 (1989), pp. 220-241

[46] H. Hussmann; T. Spohn; K. Wieczerkowski Thermal equilibrium states of Europa's ice shell: Implications for internal ocean thickness and surface heat flow, Icarus, Volume 156 (2002), pp. 143-151

[47] G. Tobie; G. Choblet; C. Sotin Tidally heated convection: Constraints on Europa's ice shell thickness, J. Geophys. Res., Volume 108 (2003) no. E11 (CiteID 5124) | DOI

[48] G. Tobie; A. Mocquet; C. Sotin Tidal dissipation within large icy satellites: Europa and Titan, Icarus (2004) (in press)

[49] C. Sotin; J. Head; G. Tobie Europa: Tidal heating of upwelling thermal plumes and the origin of lenticulae and chaos melting, Geophys. Res. Lett., Volume 29 (2002) (74-1–74-4)

[50] P. Cassen; S.J. Peale; R.T. Reynolds On the comparative evolution of Ganymede and Callisto, Icarus, Volume 41 (1980), pp. 232-239

[51] W.F. Budd; T.H. Jacka A review of ice rheology for ice sheet modelling, Cold Reg. Sci. Technol., Volume 16 (1989), pp. 107-144

[52] W.B. Durham; S.H. Kirby; L.A. Stern Creep of water ices at planetary conditions: A compilation, J. Geophys. Res., Volume 102 (1997), pp. 16293-16302

[53] D.L. Goldsby; D.L. Kohlstedt Superplastic deformation of ice: Experimental observations, J. Geophys. Res., Volume 106 (2001), pp. 11017-11030

[54] W.B. Durham; L.A. Stern; S.H. Kirby Rheology of ice I at low stress and elevated confining pressure, J. Geophys. Res., Volume 106 (2001), pp. 11031-11042

[55] P. Duval; M. Montagnat Comment on “Superplastic deformation of ice: Experimental observations”, by D.L. Goldsby and D.L. Kohlstedt, J. Geophys. Res., Volume 107 (2002) no. B4 (CiteID 2082) | DOI

[56] M. Montagnat; P. Duval Rate controlling processes in the creep of polar ice, influence of grain boundary migration associated with recrystallization, Earth Planet. Sci. Lett., Volume 183 (2000), pp. 179-186

[57] P. Duval The role of the water content on the creep rate of polycrystalline ice, Isotopes and Impurities in Snow and Ice, IAHS Publ., vol. 118, 1977, pp. 29-33

[58] S. De La Chapelle; H. Milsch; O. Castelnau; P. Duval Compressive creep of ice containing a liquid intergranular phase: rate-controlling processes in the dislocation creep regime, Geophys. Res. Lett., Volume 26 (1999), pp. 251-254

[59] C. Sotin Viscosité des glaces et dynamique de Ganymède, B. Soc. Géol. Fr., Volume 1 (1987), pp. 107-112

[60] J.-P. Poirier; C. Sotin; J. Peyronneau Viscosity of high-pressure ice VI and dynamics of Ganymede, Nature, Volume 292 (1981), pp. 225-227

[61] C. Sotin; J.-P. Poirier The sapphire anvil cell as a creep apparatus (Duba et al., eds.), The Brittle-Ductile Transition in Rocks: The Heard Volume, Geophysical Monograph, vol. 56, AGU, 1990, pp. 219-223

[62] W.B. Durham; L.A. Stern; S.H. Kirby Rheology of water ices V and VI, J. Geophys. Res., Volume 101 (1996), pp. 2989-3002

[63] P.W. Bridgman Water in the liquid and five solid forms under pressure, P. Am. Acad. Arts Sci., Volume 47 (1911), p. 441

[64] R.G. Prinn; B. Fegley Kinetic inhibition of CO and N2 reduction in circumplanetary nebulae – Implications for satellite composition, Astrophys. J., Volume 249 (1981), pp. 308-317

[65] A.P. Rollet; G. Vuillard Sur un nouvel hydrate de l'ammoniac, C. R. Acad. Sci. Paris, Volume 243 (1956), pp. 383-386

[66] T. McCord et al. Non-water-ice constituents in the surface material of the icy Galilean satellites from the Galileo near-infrared mapping spectrometer investigation, J. Geophys. Res., Volume 103 (1998), pp. 8603-8626

[67] S. Boone; M.F. Nicol Ammonia-water mixtures at high pressures – Melting curves of ammonia dihydrate and ammonia monohydrate and a revised high-pressure phase diagram for the water-rich region, Lunar and Planetary Science Conference, 21st, Houston, TX, Proceedings A91-42332 17-91, 1991, pp. 603-610

[68] O. Grasset; S. Beauchesne; C. Sotin Etude par spectrométrie Raman in situ du diagramme de phase de NH3-H2O dans le domaine 10 MPa–1.5 GPa : application à la dynamique de Titan, C. R. Acad. Sci. Paris, Ser. IIa, Volume 320 (1995), pp. 249-256

[69] D.L. Hogenboom; J.S. Kargel; G.J. Consolmagno; T.C. Holden; L. Lee; M. Buyyounouski The ammonia–water system and the chemical differentiation of icy satellites, Icarus, Volume 128 (1997), pp. 171-180

[70] O. Mousis; J. Pargamin; O. Grasset; C. Sotin Experiments in the NH3-H2O system in the [0,1 GPa] pressure range – implications for the deep liquid layer of large icy satellites, Geophys. Res. Lett., Volume 29 (2002) (CiteID 2192) | DOI

[71] O. Grasset; C. Sotin The cooling rate of a liquid shell in Titan's interior, Icarus, Volume 123 (1996), pp. 101-112

[72] J. Lunine Does Titan have oceans, Am. Sci., Volume 82 (1994), pp. 134-143

[73] D.B. Campbell; G.J. Black; L.M. Carter; S.J. Ostro Radar evidences for liquid surfaces on Titan, Science, Volume 300 (2003), pp. 431-434

[74] J.S. Loveday; R.J. Nelmes; M. Guthrie; S.A. Belmonte; D.R. Allan; D.D. Klug; J.S. Tse; Y.P. Handa Stable methane hydrate above 2 GPa and the source of Titan's atmospheric methane, Nature, Volume 410 (2001), pp. 661-663

[75] J. Lunine; D.J. Stevenson Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system, Astrophys. J. Suppl. Series, Volume 58 (1985), pp. 493-531

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Titan's native ocean revealed beneath some 45 km of ice by a Schumann-like resonance

Christian Béghin; Christophe Sotin; Michel Hamelin

C. R. Géos (2010)


A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies

Valérie Ciarletti

C. R. Phys (2016)