Comptes Rendus
Probing matter with electromagnetic waves / Sonder la matière par les ondes électromagnétiques
A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies
[Une diversité de radars conçus pour révéler et caractériser les structures cachées des petits corps et planètes du système solaire]
Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 966-975.

Depuis les premières observations radar de la Lune depuis la Terre en 1946, les radars font de plus en plus fréquemment partie de la charge utile des missions d'exploration du système solaire. Ils sont, en effet, capables de recueillir des informations à la fois sur la structure superficielle d'un corps ou d'une planète à travers une atmosphère optiquement opaque, de sonder le sous-sol d'une planète, ou encore de révéler la structure interne d'un petit corps.

Une revue non exhaustive des radars scientifiques développés pour l'exploration des planètes et autres corps du système solaire est présentée dans cet article. Quelques résultats majeurs sont présentés. L'accent est mis sur la variété des radars qui ont été et sont actuellement conçus en terme de fréquence ou de mode opératoire en fonction des contraintes de la mission et des objectifs visés.

Since the very first observations of the Moon from the Earth with radar in 1946, radars are more and more frequently selected to be part of the payload of exploration missions in the Solar System. They are, in fact, able to collect information on the surface structure of bodies or planets hidden by opaque atmospheres, to probe the planet subsurface or even to reveal the internal structure of a small body comet nucleus.

A brief review of radars designed for the Solar System planets and bodies' exploration is presented in the paper. This review does not aim at being exhaustive but will focus on the major results obtained. The variety of radars that have been or are currently designed in terms of frequency or operational modes will be highlighted.

Publié le :
DOI : 10.1016/j.crhy.2016.07.022
Keywords: Radar, Space missions, Electromagnetic wave propagation
Mot clés : Radar, Missions spatiales, Propagation des ondes électromagnetiques
Valérie Ciarletti 1

1 LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Université Paris-6, CNRS, 78280 Guyancourt, France
@article{CRPHYS_2016__17_9_966_0,
     author = {Val\'erie Ciarletti},
     title = {A variety of radars designed to explore the hidden structures and properties of the {Solar} {System's} planets and bodies},
     journal = {Comptes Rendus. Physique},
     pages = {966--975},
     publisher = {Elsevier},
     volume = {17},
     number = {9},
     year = {2016},
     doi = {10.1016/j.crhy.2016.07.022},
     language = {en},
}
TY  - JOUR
AU  - Valérie Ciarletti
TI  - A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies
JO  - Comptes Rendus. Physique
PY  - 2016
SP  - 966
EP  - 975
VL  - 17
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crhy.2016.07.022
LA  - en
ID  - CRPHYS_2016__17_9_966_0
ER  - 
%0 Journal Article
%A Valérie Ciarletti
%T A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies
%J Comptes Rendus. Physique
%D 2016
%P 966-975
%V 17
%N 9
%I Elsevier
%R 10.1016/j.crhy.2016.07.022
%G en
%F CRPHYS_2016__17_9_966_0
Valérie Ciarletti. A variety of radars designed to explore the hidden structures and properties of the Solar System's planets and bodies. Comptes Rendus. Physique, Volume 17 (2016) no. 9, pp. 966-975. doi : 10.1016/j.crhy.2016.07.022. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2016.07.022/

[1] D. Fink The radar equation, Electronics, Volume 18 (1945), pp. 92-94

[2] J. Mofensen Radar echoes from the moon, Electronics, Volume 19 (1946), pp. 92-98

[3] Z. Bay Reflection of microwaves from the moon, Hung. Acta Phys., Volume 1 (1946), pp. 1-22

[4] D.O. Muhleman, D.B. Holdridge, N. Block, Determination of the astronomical unit from velocity, range, and integrated velocity data, and the Venus–Earth ephemeris, in: W.K. Victor, R. Stevens, S.W. Golomb (Eds.), Radar Exploration of Venus: Goldstone Observatory Report for March–May 1961, pp. 83–92, Technical report 32-132.

[5] M.A. Slade; L.A.M. Benner; A. Silva Goldstone Solar System radar observatory: Earth-based planetary mission support and unique science results, Proc. IEEE, Volume 99 (2011) no. 5, pp. 757-769 | DOI

[6] R.B. Dyce; G.H. Pettengill; I.I. Shapiro Radar determination of the rotations of Venus and Mercury, Astron. J., Volume 72 (1967) no. 3, pp. 351-359 | DOI

[7] A.F. Chicarro, Science Team, The Mars Express mission and its Beagle-2 lander, in: Sixth International Conference on Mars, 20–25 July 2003, Pasadena, CA, USA, abstract No. 3049.

[8] M.D.D. Johnston, J.E. Graf, R.W. Zurek, H.J. Eisen, B. Jai, The Mars Reconnaissance Orbiter mission, in: 2005 IEEE Aerospace Conference, 5–12 March 2005, pp. 447–464, . | DOI

[9] R.S. Saunders et al. Magellan mission summary, J. Geophys. Res., Volume 97 (1992) no. E8, pp. 13067-13090 | DOI

[10] D.L. Matson et al. The Cassini/Huygens mission to the Saturnian System, Space Sci. Rev., Volume 104 (2002) no. 1–4, pp. 1-58 | DOI

[11] Y. Su et al. Data processing and initial results of Chang'e-3 lunar penetrating radar, RAA, Volume 14 (2014) no. 12, pp. 1623-1632 | DOI

[12] J.L. Vago; G. Kminek Putting together an exobiology mission: the ExoMars example (G. Horneck; P. Rettberg, eds.), Complete Course in Astrobiology, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2007 | DOI

[13] W. Kofman et al. Comet nucleus sounding experiment by radiowave transmission, Adv. Space Res., Volume 21 (1998) no. 11, pp. 1589-1598

[14] M. Biancheri-Astier, R. Hassen-Khodja, V. Ciarletti, C. Corbel, Y. Simon, C. Caudoux, J. Faroux, F. Dolon, EISS: an HF mono and bistatic GPR for terrestrial an planetary deep sounding, Lecce, Italy, 2010, GPR2010.

[15] A. Le Gall; V. Ciarletti; J.J. Berthelier; A. Reineix; C. Guiffaut; R. Ney; F. Dolon; S. Bonaimé; R. Clairquin; D. Nevejans An imaging HF GPR using stationary antennas: experimental validation over the Antarctic ice sheet, IEEE Trans. Geosci. Remote Sens., Volume 46 (2008) no. 12, pp. 3975-3986 | DOI

[16] V. Ciarletti; A. Le Gall; S.M. Clifford; Ch. Corbel; F. Dolon; R. Ney; J.J. Berthelier Bistatic sounding of the deep subsurface with a ground penetrating radar – experimental validation, Planet. Space Sci., Volume 117 (2015), pp. 177-183 | DOI

[17] R.A. Simpson et al. Polarization in bistatic radar probing of planetary surfaces: application to Mars express data, Proc. IEEE, Volume 99 (2011) no. 5 | DOI

[18] S. Nozette et al. The Clementine bistatic radar experiment, Science, Volume 274 (1996) no. 5292, pp. 1495-1498

[19] R.A. Simpson; G.L. Tyler; J.P. Brenkle; M. Sue Viking bistatic radar observations of the Hellas basin on Mars: preliminary results, Science, Volume 203 (1979), pp. 45-46

[20] L.J. Porcello et al. The Apollo Lunar sounder radar system, Proc. IEEE, Volume 62 (1974) no. 6, pp. 769-783

[21] G. Picardi et al. Radar soundings of the subsurface of Mars', Science, Volume 310 ( 23 Dec. 2005 ), pp. 1925-1929

[22] Roger J. Phillips et al. Mars north polar deposits: stratigraphy, age, and geodynamical response, Science, Volume 320 (2008), p. 1182 | DOI

[23] Takayuki Ono; Hiroshi Oya Lunar radar sounder (LRS) experiment on-board the SELENE spacecraft, Earth Planets Space, Volume 52 (2000), pp. 629-637

[24] Yu.N. Aleksandrov et al. A planet rediscovered: results of Venus radar imaging from the Venera 15 and Venera 16 spacecraft, Sov. Sci. Rev., E, Astrophys. Space Phys., Volume 6 ( Aug. 1988 ) no. 1, pp. 61-101

[25] W.T.K. Johnson Magellan imaging radar mission to Venus, Proc. IEEE, Volume 79 (1991) no. 6, pp. 777-790 | DOI

[26] C. Elachi; M.D. Allison; L. Borgarelli; P. Encrenaz; E. Im; M.A. Janssen; W.T.K. Johnson; R.L. Kirk; R.D. Lorenz; J.I. Lunine; D.O. Muhleman; S.J. Ostro; G. Picardi; F. Posa; C.G. Rapley; L.E. Roth; R. Seu; L.A. Soderblom; S. Vetrella; S.D. Wall; C.A. Wood; H.A. Zebker RADAR: the Cassini Titan radar mapper, Space Sci. Rev., Volume 115 (2004), pp. 71-110

[27] W.B. Rossow; A.D. Del Genio; S.S. Limaye; L.D. Travis Cloud morphology and motions from Pioneer Venus images, J. Geophys. Res., Volume 85 (1980), pp. 8107-8128

[28] G.H. Pettengill et al. Pioneer Venus radar mapper experiment, Science, Volume 203 (1979) no. 4382, pp. 806-808

[29] G.H. Pettengill; E. Eliason; P.G. Ford; G.B. Loriot; H. Masursky; G.E. McGill Pioneer Venus Radar results altimetry and surface properties, J. Geophys. Res., Volume 85 (1980) no. A13, pp. 8261-8270 | DOI

[30] V.L. Barsukov et al. The geology and geomorphology of the Venus surface as revealed by the radar images obtained by Veneras 15 and 16, J. Geophys. Res., Volume 91 (1986) no. B4, p. D378-D398 (Part 2)

[31] S.S. Dallas; N.L. Nickle The Magellan mission to Venus. Advances in astronautical sciences. Part 1, Aerosp. Cent., Volume 21 (1987) no. 64 (AAS 86–331)

[32] J.P. Ford; R.G. Blom; J.A. Crisp; C. Elachi; T.G. Farr; R.S. Saunders; E.E. Theilig; S.D. Wall; S.B. Yewell Spaceborne Radar Observations: A Guide for Magellan Radar Image Analysis, JPL Pub., 1989 (89-41, 126 p)

[33] R.S. Saunders; G.H. Pettengill; R.E. Arvidson; B. Sjogren; W.T.K. Johnson; L.J. Pieri The Magellan Venus radar mapping mission, J. Geophys. Res., Volume 95 (1990) no. B6, pp. 8339-8355

[34] Stofan et al. The lakes of Titan, Nature, Volume 445 (2007), pp. 61-64 | DOI

[35] M.C. Lopes et al. Cryovolcanism on Titan: new results from Cassini RADAR and VIMS, J. Geophys. Res., Planets, Volume 118 (2013), pp. 1-20 | DOI

[36] A. Le Gall; M.A. Janssen; L.C. Wye; A.G. Hayes; J. Radebaugh; C. Savage; H. Zebker; R.D. Lorenz; J.I. Lunine; R.L. Kirk; R.M.C. Lopes; S. Wall; P. Callahan; E.R. Stofan; T. Farr; The Cassini Radar Team SAR, radiometry, scatterometry and altimetry observations of Titan's dune fields, Icarus, Volume 213 (2011), pp. 608-624

[37] A. Le Gall; M.A. Janssen; P. Paillou; R.D. Lorenz; S.D. Wall Radar-bright channels on Titan, Icarus, Volume 207 (2010) no. 2, pp. 948-958 (ISSN: 0019-1035) | DOI

[38] J. Radebaugh; R.D. Lorenz; R.L. Kirk; J.I. Lunine; E.R. Stofan; R.M.C. Lopes; S.D. Wall Mountains on Titan observed by Cassini Radar, Icarus, Volume 192 (2007) no. 1, pp. 77-91

[39] T. Cornet; O. Bourgeois; S. Le Mouélic; S. Rodriguez; T. Lopez Gonzalez; C. Sotin; G. Tobie; C. Fleurant; J.W. Barnes; R.H. Brown; K.H. Baines; B.J. Buratti; R.N. Clark; P.D. Nicholson Geomorphological significance of Ontario Lacus on Titan: integrated interpretation of Cassini VIMS, ISS and RADAR data and comparison with the Etosha Pan (Namibia), Icarus, Volume 218 (2012), pp. 788-806

[40] T. Cornet; D. Cordier; T.L. Bahers; O. Bourgeois; C. Fleurant; S.L. Mouélic; N. Altobelli Dissolution on Titan and on Earth: toward the age of Titan's karstic landscapes, J. Geophys. Res., Planets, Volume 120 (2015), pp. 1044-1074 | DOI

[41] Giovanni Picardi et al. Radar soundings of the subsurface of Mars, Science, Volume 310 (2005) no. 5756, pp. 1925-1928 | DOI

[42] G. Picardi et al. Performance and surface scattering models for the Mars advanced radar for subsurface and ionosphere sounding (MARSIS), Planet. Space Sci., Volume 52 (2004), pp. 149-156

[43] R. Orosei et al. Mars advanced radar for subsurface and ionospheric sounding (MARSIS) after nine years of operation: a summary, Planet. Space Sci., Volume 112 (2014), pp. 98-114 | DOI

[44] J.J. Plaut; G. Picardi et al. Subsurface radar sounding of the South polar layered deposits of Mars, Science, Volume 316 (2007) no. 5821, pp. 92-95

[45] T.R. Watters et al. Radar sounding of the Medusae Fossae Formation Mars: equatorial ice or dry, low-density deposits?, Science, Volume 318 (2007) no. 5853, p. 1125 | DOI

[46] O. White et al. MARSIS radar sounder observations in the vicinity of Ma'adim Vallis, Mars, Icarus, Volume 201 (2009), p. 460 | DOI

[47] R. Seu et al. SHARAD sounding radar on the Mars Reconnaissance Orbiter, J. Geophys. Res., Volume 112 (2007) | DOI

[48] Nathaniel E. Putzig; Roger J. Phillips; Bruce A. Campbell; John W. Holt; Jeffrey J. Plaut; Lynn M. Carter; Anthony F. Egan; Fabrizio Bernardini; Ali Safaeinili; Roberto Seu Subsurface structure of planum Boreum from Mars Reconnaissance Orbiter Shallow Radar soundings, Icarus, Volume 204 (2009) no. 2, pp. 443-457

[49] J. Plaut Jeffrey; A. Safaeinili; J.W. Holt; R.J. Phillips; J.W. Head; R. Seu; N.E. Putzig; A. Frigeri Radar evidence for ice in lobate debris aprons in the mid-northern latitudes of Mars, Geophys. Res. Lett., Volume 36 (2009) | DOI

[50] V. Ciarletti; C. Corbel; D. Plettemeier; P. Cais; S.M. Clifford; S.E. Hamran WISDOM a GPR designed for shallow and high resolution sounding of the Martian subsurface, Proc. IEEE, Volume 99 (2011) no. 5, pp. 824-836 | DOI

[51] S. Dorizon; V. Ciarletti; D. Plettermeier; W.-S. Benedix Performance validation of the ExoMars 2018 WISDOM GPR in ice caves, Austria, Planet. Space Sci., Volume 120 (2016), pp. 1-14

[52] S.E. Hamran, H.E.F. Amundsen, L.M. Carter, R.R. Ghent, J. Kohler, M.T. Mellon, D.A. Paige, The RIMFAX ground penetrating radar on the Mars 2020 Rover, American Geophysical Union, Fall Meeting 2014, abstract #P11A-3746.

[53] G.L. Tyler; R.A. Simpson Bistatic radar measurements of topographic variations in lunar surface slopes with explorer 35, Radio Sci., Volume 5 (1970) no. 2, pp. 263-271 | DOI

[54] L.J. Porcello; R.L. Jordan; J.S. Zelenka; G.F. Adams; R.J. Phillips; W.E. Brown; S.H. Ward; P.L. Jackson The Apollo lunar sounder radar system, Proc. IEEE, Volume 62 (1974), pp. 769-783

[55] W.J. Peeples; W.R. Sill; T.W. May; S.H. Ward; R.J. Phillips; R.L. Jordan; E.A. Abbott; T.J. Killpack Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium, J. Geophys. Res., Volume 83 (1978) | DOI

[56] A. Pommerol; W. Kofman; J. Audouard; C. Grima; P. Beck; J. Mouginot; A. Herique; A. Kumamoto; T. Kobayashi; T. Ono Detectability of subsurface interfaces in lunar maria by the LRS/SELENE sounding radar: influence of mineralogical composition, Geophys. Res. Lett., Volume 37 (2010) | DOI

[57] P.D. Spudis et al. Mini-SAR: an imaging radar experiment for the Chandrayaan-1 mission to the Moon, Curr. Sci., Volume 96 (2009) no. 4

[58] D.B.J. Bussey; P.D. Spudis; the Mini-RF Team New insights into lunar processes and history from global mapping by Mini-RF radar, Lunar Planet. Sci., Volume 42 (2011), p. 2086

[59] P.D. Spudis et al. Evidence for water ice on the moon: results for anomalous polar craters from the LRO Mini-RF imaging radar, J. Geophys. Res., Planets, Volume 118 (2013) | DOI

[60] M.A. Barucci; E. Dotto; Anny Chantal Levasseur-Regourd Space missions to small bodies: asteroids and cometary nuclei, Astron. Astrophys. Rev., Volume 19 (2011) no. 1, p. 48 (29 p)

[61] Luigi Colangeli; Elena Mazotta Epifani; Pasquale Palumbo The New Rosetta Targets: Observations, Simulations, and Instrument Performances, Springer-Verlag, New York, 2004 (315 p)

[62] Kofman et al. The comet nucleus sounding experiment by radiowave transmission (CONSERT): a short description of the instrument and of the commissioning stages, Space Sci. Rev., Volume 128 (2007), pp. 413-432

[63] http://blogs.esa.int/rosetta/2014/11/21/homing-in-on-philaes-final-landing-site/

[64] Kofman et al. Preliminary results from CONSERT experiment on Rosetta mission, 2014 (AGU 2014, P34B-01, San Francisco, CA, USA)

[65] V. Ciarletti; A.C. Levasseur-Regourd; J. Lasue; C. Statz; D. Plettemeier; A. Hérique; Y. Rogez; W. Kofman CONSERT suggests a change in local properties of 67P/Churyumov–Gerasimenko's nucleus at depth, Astron. Astrophys., Volume 583 (2015) | DOI

[66] P. Michel et al. Science case for the asteroid impact mission (AIM): a component of the Asteroid Impact & Deflection Assessment (AIDA) mission, Adv. Space Res., Volume 57 (2016) no. 12, pp. 2529-2547 | DOI

[67] L. Buzzone; G. Alberti; C. Catallo; A. Ferro; W. Kofman; R. Orosei Subsurface radar sounding of the Jovian moon Ganymede, Proc. IEEE, Volume 99 (2011) no. 5

[68] O. Grasset et al. Jupiter icy moons explorer (JUICE): AN ESA mission to orbit Ganymede and to characterize the Jupiter system, Planet. Space Sci., Volume 78 (2013), pp. 1-21

[69] L. Bruzzone et al. RIME: radar for icy Moon exploration, EPSC Abstr., Volume 8 (2013) (EPSC2013-744-1)

[70] C.B. Phillips; R.T. Pappalardo Europa clipper mission concept: exploring Jupiter's ocean moon, Eos, Volume 95 (2014) no. 20

[71] A. Moussessian; D.D. Blankenship; J. Plaut; G.W. Patterson; Y. Gim; D.M. Schroeder; K.M. Soderlund; D. Young; C. Grima; E. Chapin REASON for Europa, 2015 (AGU Fall Meeting, San Francisco)

[72] G. Paar; G. Hesina; C. Traxler; V. Ciarletti; D. Plettemeier; C. Statz; K. Sander; B. Nauschnegg Embedding sensor visualization in Martian terrain reconstructions, Proceedings of ASTRA, 2015

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Internal structure of Near-Earth Objects

Richard P. Binzel; Wlodek Kofman

C. R. Phys (2005)


Comets at radio wavelengths

Jacques Crovisier; Dominique Bockelée-Morvan; Pierre Colom; ...

C. R. Phys (2016)


Titan's native ocean revealed beneath some 45 km of ice by a Schumann-like resonance

Christian Béghin; Christophe Sotin; Michel Hamelin

C. R. Géos (2010)