Comptes Rendus
Advances in atomic fountains
Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 829-843.

This article describes the work performed at BNM-SYRTE (Observatoire de Paris) in the past few years, toward the improvement and the use of microwave frequency standards using laser-cooled atoms. First, recent improvements of the 133Cs and 87Rb atomic fountains are described. An important advance is the achievement of a fractional frequency instability of 1.6×10−14τ1/2 where τ is the measurement time in seconds, thanks to the routine use of a cryogenic sapphire oscillator as an ultra-stable local frequency reference. The second advance is a powerful method to control the frequency shift due to cold collisions. These two advances lead to a fractional frequency in stability of 2×10−16 at 50 000 s between two independent primary standards. In addition, these clocks realize the SI second with an accuracy of 7×10−16, one order of magnitude below that of uncooled devices. Tests of fundamental physical laws constitute an important field of application for highly accurate atomic clocks. In a second part, we describe tests of possible variations of fundamental constants using 87Rb and 133Cs fountains. The third part is an update on the cold atom space clock PHARAO developed in collaboration with CNES. This clock is one of the main instruments of the ACES/ESA mission which will fly on board the International Space Station in 2007-2008, enabling a new generation of relativity tests.

Cet article décrit le travail réalisé au BNM-SYRTE (Observatoire de Paris) ces dernières années, en vue de l'amélioration et de l'utilisation d'étalons de fréquence micro-onde fondés sur l'utilisation d'atomes refroidis par laser. Nous décrivons tout d'abord les améliorations récentes des fontaines atomiques à 133Cs et 87Rb. Une avancée importante est l'obtention d'une stabilité relative de fréquence de 1.6×10−14τ1/2τ est la durée de la mesure en secondes, grâce à l'utilisation routinière d'un oscillateur cryogénique à résonateur en saphir comme référence de fréquence locale ultra-stable. La deuxième avancée est une méthode puissante pour contrôler le déplacement de fréquence lié aux collisions froides. Ces deux progrès conduisent à une stabilité de fréquence de 2×10−16 à 50 000 s, une première pour des étalons primaires. De plus, ces horloges réalisent la seconde du système international SI avec une exactitude de 7×10−16, une amélioration d'un ordre de grandeur par rapport aux dispositifs sans refroidissement laser. Les tests des lois fondamentales de la physique constituent une application importante des horloges atomiques ultra-précises. Dans une deuxième partie, nous décrivons la recherche d'une éventuelle variation des constantes fondamentales utilisant des fontaines à 133Cs et 87Rb. La troisième partie fait le point sur la réalisation d'une horloge spatiale à atomes froids PHARAO développée en collaboration avec le CNES. Cette horloge est l'un des instruments principaux de la mission spatiale ACES de l'ESA qui volera à bord de la station spatiale internationale en 2007-2008, en vue d'effectuer une nouvelle génération de tests de la Relativité.

Published online:
DOI: 10.1016/j.crhy.2004.09.003
Keywords: Atomic fountains, Microwave frequency standards, Laser-cooled atoms, Atomic clocks, PHARAO
Mot clés : Fontaines atomiques, Étalons de fréquence micro-onde, Atomes refroidis par laser, Horloges atomiques, PHARAO

S. Bize 1; P. Laurent 1; M. Abgrall 1; H. Marion 1; I. Maksimovic 1; L. Cacciapuoti 1; J. Grünert 1; C. Vian 1; F. Pereira dos Santos 1; P. Rosenbusch 1; P. Lemonde 1; G. Santarelli 1; P. Wolf 1; A. Clairon 1; A. Luiten 2; M. Tobar 2; C. Salomon 3

1 BNM-SYRTE, Observatoire de Paris, 61, avenue de l'Observatoire, 75014 Paris, France
2 The University of Western Australia, School of Physics, 35, Stirling Highway, Crawley, Western Australia, Australia
3 Laboratoire Kastler Brossel, ENS, 24, rue Lhomond, 75005 Paris, France
@article{CRPHYS_2004__5_8_829_0,
     author = {S. Bize and P. Laurent and M. Abgrall and H. Marion and I. Maksimovic and L. Cacciapuoti and J. Gr\"unert and C. Vian and F. Pereira dos Santos and P. Rosenbusch and P. Lemonde and G. Santarelli and P. Wolf and A. Clairon and A. Luiten and M. Tobar and C. Salomon},
     title = {Advances in atomic fountains},
     journal = {Comptes Rendus. Physique},
     pages = {829--843},
     publisher = {Elsevier},
     volume = {5},
     number = {8},
     year = {2004},
     doi = {10.1016/j.crhy.2004.09.003},
     language = {en},
}
TY  - JOUR
AU  - S. Bize
AU  - P. Laurent
AU  - M. Abgrall
AU  - H. Marion
AU  - I. Maksimovic
AU  - L. Cacciapuoti
AU  - J. Grünert
AU  - C. Vian
AU  - F. Pereira dos Santos
AU  - P. Rosenbusch
AU  - P. Lemonde
AU  - G. Santarelli
AU  - P. Wolf
AU  - A. Clairon
AU  - A. Luiten
AU  - M. Tobar
AU  - C. Salomon
TI  - Advances in atomic fountains
JO  - Comptes Rendus. Physique
PY  - 2004
SP  - 829
EP  - 843
VL  - 5
IS  - 8
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.09.003
LA  - en
ID  - CRPHYS_2004__5_8_829_0
ER  - 
%0 Journal Article
%A S. Bize
%A P. Laurent
%A M. Abgrall
%A H. Marion
%A I. Maksimovic
%A L. Cacciapuoti
%A J. Grünert
%A C. Vian
%A F. Pereira dos Santos
%A P. Rosenbusch
%A P. Lemonde
%A G. Santarelli
%A P. Wolf
%A A. Clairon
%A A. Luiten
%A M. Tobar
%A C. Salomon
%T Advances in atomic fountains
%J Comptes Rendus. Physique
%D 2004
%P 829-843
%V 5
%N 8
%I Elsevier
%R 10.1016/j.crhy.2004.09.003
%G en
%F CRPHYS_2004__5_8_829_0
S. Bize; P. Laurent; M. Abgrall; H. Marion; I. Maksimovic; L. Cacciapuoti; J. Grünert; C. Vian; F. Pereira dos Santos; P. Rosenbusch; P. Lemonde; G. Santarelli; P. Wolf; A. Clairon; A. Luiten; M. Tobar; C. Salomon. Advances in atomic fountains. Comptes Rendus. Physique, Volume 5 (2004) no. 8, pp. 829-843. doi : 10.1016/j.crhy.2004.09.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.09.003/

[1] Proceedings of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001 (See for instance)

[2] A. Clairon et al. A cesium fountain frequency standard: recent results, IEEE T. Instrum. Meas., Volume 44 (1995), p. 128

[3] C.J. Bordé Atomic clocks and inertial sensors, Metrologia, Volume 39 (2002), p. 435

[4] Y. Sortais et al. Cold collision frequency shifts in a 87Rb fountain, Phys. Rev. Lett., Volume 85 (2000), p. 3117

[5] C. Fertig; K. Gibble Measurement and cancellation of the cold collision frequency shift in an 87Rb fountain clock, Phys. Rev. Lett., Volume 85 (2000), p. 1622

[6] P. Laurent et al. A cold atom clock in absence of gravity, Eur. Phys. J. D, Volume 3 (1998), p. 201

[7] A.G. Mann; S. Chang; A.N. Luiten Cryogenic sapphire oscillator with exceptionally high frequency stability, IEEE T. Instrum. Meas., Volume 50 (2001), p. 519

[8] C. Vian, et al., BNM-SYRTE fountains: recent results, IEEE T. Instrum. Meas. (2004), submitted for publication

[9] K. Gibble; S. Chu A laser cooled Cs frequency standard and a measurement of the frequency shift due to ultra-cold collisions, Phys. Rev. Lett., Volume 70 (1993), p. 1771

[10] S. Ghezali; P. Laurent; S.N. Lea; A. Clairon An experimental study of the spin-exchange frequency shift in a laser cooled cesium fountain standard, Europhys. Lett., Volume 36 (1996), p. 25

[11] F. Pereira Dos Santos et al. Controlling the cold collision shift in high precision atomic interferometry, Phys. Rev. Lett., Volume 89 (2002), p. 233004

[12] S. Bize et al. Cavity frequency pulling in cold atom fountains, IEEE T. Instrum. Meas., Volume 50 (2001), p. 503

[13] H. Marion et al. First observation of feshbach resonances at very low magnetic field in a 133Cs fountain, Proc. of the 2004 EFTF, 2004 | arXiv

[14] R. Schröder; U. Hübner; D. Griebsch Design and realization of the microwave cavity in the PTB caesium atomic fountain clock CSF1, IEEE T. Ultrason. Ferroelect. Freq. Contr., Volume 49 (2002), p. 383

[15] T.E. Parker et al. First comparison of remote cesium fountains, Proc. of the 2001 IEEE Intl. Freq. Cont. Symp., 2001, p. 63

[16] J.-Y. Richard et al. Comparison of remote cesium fountains using GPS P3 and TWSTFT links, Proc. of the 2004 EFTF, 2004

[17] T. Damour; F. Dyson The Oklo bound on the time variation of the fine-structure constant revisited, Nucl. Phys. B, Volume 480 (1996), p. 37

[18] Y. Fujii Time-variability of the fine-structure constant expected from the Oklo constraint and the QSO absorption lines, Phys. Lett. B, Volume 573 (2003), p. 39

[19] J.K. Webb et al. Further evidence for cosmological evolution of the fine structure constant, Phys. Rev. Lett., Volume 87 (2001), p. 091301

[20] R. Srianand; H. Chand; P. Petitjean; B. Aracil Limits on the time variation of the electromagnetic fine-structure constant in the low energy limit from absorption lines in the spectra of distant quasars, Phys. Rev. Lett., Volume 92 (2004), p. 121302

[21] W.J. Marciano Time variation of the fundamental “constants” and Kaluza–Klein theories, Phys. Rev. Lett., Volume 52 (1984), p. 489

[22] T. Damour; A. Polyakov The string dilaton and a least coupling principle, Nucl. Phys. B, Volume 423 (1994), p. 532

[23] T. Damour; F. Piazza; G. Veneziano Runaway dilaton and equivalence principle violations, Phys. Rev. Lett., Volume 89 (2002), p. 081601

[24] H. Marion et al. Search for variations of fundamental constants using atomic fountain clocks, Phys. Rev. Lett., Volume 90 (2003), p. 150801

[25] J.D. Prestage; R.L. Tjoelker; L. Maleki Atomic clocks and variations of the fine structure constant, Phys. Rev. Lett., Volume 74 (1995), p. 3511

[26] D.J. Berkeland et al. Laser-cooled mercury ion frequency standard, Phys. Rev. Lett., Volume 80 (1998), p. 2089

[27] M. Niering et al. Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock, Phys. Rev. Lett., Volume 84 (2000), p. 5496

[28] J. Helmcke et al. Optical frequency standard based on cold Ca atoms, IEEE T. Instrum. Meas., Volume 52 (2003), p. 250

[29] S. Bize et al. Testing the stability of fundamental constants with the 199Hg+ single-ion optical clock, Phys. Rev. Lett., Volume 90 (2003), p. 150802

[30] J. Stenger et al. Absolute frequency measurement of the 435.5 nm 171Yb+ clock transition with a Kerr-lens mode-locked femtosecond laser, Opt. Lett., Volume 26 (2001), p. 1589

[31] E. Peik et al. Proc. of the Joint Mtg. IEEE Intl. Freq. Cont. Symp. and EFTF Conf., 2003

[32] V.V. Flambaum, 2003 | arXiv

[33] V.V. Flambaum; D.B. Leinweber; A.W. Thomas; R.D. Young Limits on the temporal variation of the fine structure constant, quark masses and strong interaction from quasar absorption spectra and atomic clock experiments, Phys. Rev. D, Volume 69 (2004), p. 115006

[34] V.A. Dzuba; V.V. Flambaum; J.K. Webb Calculations of the relativistic effects in many-electron atoms and space–time variation of fundamental constants, Phys. Rev. A, Volume 59 (1999), p. 230

[35] V.A. Dzuba; V.V. Flambaum; J.K. Webb Space–time variation of physical constants and relativistic corrections in atoms, Phys. Rev. Lett., Volume 82 (1999), p. 888

[36] V.A. Dzuba; V.V. Flambaum; J.K. Webb Atomic optical clocks and search for variation of the fine-structure constant, Phys. Rev. A, Volume 61 (2000), p. 034502

[37] S.G. Karshenboim Some possibilities for laboratory searches for variations of fundamental constants, Can. J. Phys., Volume 78 (2000), p. 639

[38] V.A. Dzuba; V.V. Flambaum; M.V. Marchenko Relativistic effects in Sr, Dy, YbII and YbIII and search for variation of the fine structure constant, Phys. Rev. A, Volume 68 (2003), p. 022506

[39] E.J. Angstmann; V.A. Dzuba; V.V. Flambaum Relativistic effects in two valence-electron atoms and ions and the search for variation of the fine-structure constant, Phys. Rev. A, Volume 70 (2004), p. 014102

[40] S. Bize et al. High-accuracy measurement of the 87Rb ground-tate hyperfine splitting in an atomic fountain, Europhys. Lett., Volume 45 (1999), p. 558

[41] S. Bize et al. Proc. of the 6th Symposium on Frequency Standards and Metrology (P. Gill, ed.), World Scientific, Singapore, 2001, p. 53

[42] X. Calmet; H. Fritzsch The cosmological evolution of the nucleon mass and the electroweak coupling constants, Eur. Phys. J. C, Volume 24 (2002), p. 639

[43] P. Langacker; G. Segre; M.J. Strassler Implications of gauge unification for time variation of the fine structure constant, Phys. Lett. B, Volume 528 (2002), p. 121

[44] M. Fischer et al. New limits on the drift of fundamental constants from laboratory measurements, Phys. Rev. Lett., Volume 92 (2004), p. 230802

[45] Th. Udem et al. Absolute frequency measurements of Hg+ and Ca optical clock transitions with a femtosecond laser, Phys. Rev. Lett., Volume 86 (2001), p. 4996

[46] E. Peik et al. New limit on the present temporal variation of the fine structure constant, 2004 | arXiv

[47] P. Laurent et al. Cesium fountains and micro-gravity clocks, Proc. of the 25th Moriond Conf. on Dark Matter in Cosmology, Clocks and Tests of Fundamental Laws, 1995

[48] J. Opt. Soc. Am. B, 6 (1989), p. 2020 See for instance (special issue)

[49] C. Salomon; C. Veillet ACES: Atomic Clock Ensemble in Space, Proc. of the 1st ESA symposium on Space Station Utilization, SP385, 1996, p. 295

[50] F. Allard; I. Maksimovic; M. Abgrall; P. Laurent Automatic system to control the operation of an extended cavity diode laser, Rev. Sci. Instrum., Volume 75 (2004), p. 54

[51] C. Salomon et al. Cold atoms in space and atomic clocks: ACES, C. R. Acad. Sci. Paris, Ser. IV, Volume 2 (2001), p. 1313

[52] R.F.C. Vessot et al. Tests of relativistic gravitation with a space-borne hydrogen maser, Phys. Rev. Lett., Volume 45 (1980), p. 2081

[53] HYPER: Hyper-precision cold atom interferometry in space, ESA-SCI (2000) 10

[54] F. Narbonneau et al. Proc. of the 2004 EFTF conf., 2004

[55] Proc. of the 2003 IFCS-EFTF conf., 2003 (See for instance)

[56] B.C. Young; F.C. Cruz; W.M. Itano; J.C. Bergquist Visible lasers with subhertz linewidths, Phys. Rev. Lett., Volume 82 (1999), p. 3799

[57] Th. Udem; R. Holzwarth; T.W. Hänsch Optical frequency metrology, Nature, Volume 416 (2002), p. 233

[58] H. Katori Spectroscopy of strontium atoms in the Lamb–Dicke confinement (P. Gill, ed.), Proc. of the 6th Symposium on Frequency Standards and Metrology, World Scientific, Singapore, 2001, p. 323

[59] H. Katori; M. Takamoto; V.G. Pal'chikov; V.D. Ovsiannikov Ultrastable optical clock with neutral atoms in an engineered ligth shift trap, Phys. Rev. Lett., Volume 91 (2003), p. 173005

[60] M. Takamoto; H. Katori Spectroscopy of the 1S03P0 clock transition of 87Sr in an optical lattice, Phys. Rev. Lett., Volume 91 (2003), p. 223001

[61] J. Stenger et al. Phase-coherent frequency measurement of the Ca intercombination line at 657 nm with a Kerr-lens mode-locked femtosecond laser, Phys. Rev. A, Volume 63 (2001), p. 021802

[62] I. Courtillot et al. Clock transition for a future optical frequency standard with trapped atoms, Phys. Rev. A, Volume 68 (2003), p. 030501

[63] T. Kuwamoto; K. Honda; Y. Takahashi; T. Yabuzaki Magneto-optical trapping of Yb atoms using an intercombination transition, Phys. Rev. A, Volume 60 (1999), p. R745

[64] C.Y. Park; T.H. Yoon Efficient magneto-optical trapping of Yb atoms with a violet laser diode, Phys. Rev. A, Volume 68 (2003), p. 055401

[65] S.G. Porsev; A. Derevianko; E.N. Fortson Possibility of an optical clock using the 6 1S0–6 3P0 transition in 171,173Yb atoms held in an optical lattice, Phys. Rev. A, Volume 69 (2004), p. 021403

Cited by Sources:

Comments - Policy