Three-dimensional stacking of semiconductor nano-islands in multilayers or superlattice structures provides a powerful tool for controlling the properties of self-assembled quantum dots. These stackings can be caused by several different mechanisms based on: (i) elastic interactions due to the strain fields of the buried dots; (ii) morphological interactions due to nonplanarized spacer topographies; or (iii) interactions based on chemical composition modulations within the spacer material. All three interactions may give rise to a vertical dot alignment in columns as well as to oblique or staggered dot stackings, depending on the details of the interaction mechanisms. For the interlayer correlations mediated by the elastic strain fields, the elastic anisotropy and surface orientation, but also the dot sizes and spacer layer thicknesses play a crucial role. As a result, transitions between different types of dot stackings can be induced as a function of spacer layer thicknesses and growth parameters. The large range of parameters involved in interlayer correlation formation may allow the controlled synthesis of new types of ordered structures with novel properties.
L'auto-organisation tri-dimensionnelle d'îlots de matériaux semi-conducteurs par dépôt de multicouches permet de modifier substantiellement les propriétés des boîtes quantiques. Ces empilements peuvent résulter de plusieurs phénomènes (i) les déformations élastiques de la matrice résultant des contraintes liées aux boîtes (ii) des effets topographiques liés à la corrugation de la surface libre de la matrice (iii) une modulation chimique de la matrice. Ces trois effets peuvent conduire à un alignement vertical des boîtes en structures colonnaires, ou à des empilements inclinés, selon les mécanismes en jeu. En particulier, dans le cas des interactions élastiques les paramètres pertinents sont l'orientation de la surface, l'éventuelle anisotropie des propriétés élastiques de la matrice, la taille des boîtes et l'épaisseur de la matrice entre deux couches de boîtes. Des transitions entre différents types d'empilement peuvent ainsi être obtenues en jouant sur l'épaisseur des couches de matrice ou sur les conditions de croissance. La large palette d'effets mis en jeu devrait permettre la synthèse de nouveaux types de super-réseaux de boîtes, présentant des propriétés originales.
Mots-clés : Boîtes quantiques, Croissance Stranski–Krastanow, Auto-organisation, Super-réseaux, Croissance par jets moléculaires, Auto-assemblage
Gunther Springholz 1
@article{CRPHYS_2005__6_1_89_0, author = {Gunther Springholz}, title = {Three-dimensional stacking of self-assembled quantum dots in multilayer structures}, journal = {Comptes Rendus. Physique}, pages = {89--103}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.001}, language = {en}, }
Gunther Springholz. Three-dimensional stacking of self-assembled quantum dots in multilayer structures. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 89-103. doi : 10.1016/j.crhy.2004.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.001/
[1] Quantum Dot Heterostructures, Wiley, Chichester, 1998
[2] Appl. Phys. Lett., 63 (1993), p. 3203
[3] Appl. Phys. Lett., 64 (1994), p. 196
[4] Epitaxy of Nanostructures, Springer-Verlag, Berlin, 2004
[5] Acta Metall., 37 (1989), p. 621
[6] Phys. Rev. Lett., 66 (1991), p. 3032
[7] Phys. Rev. Lett., 64 (1990), p. 1943
[8] J. Mech. Solids, 39 (1991), p. 443
[9] Surf. Sci., 293 (1993), p. 123
[10] Phys. Rev. Lett., 72 (1994), p. 3570
[11] Phys. Rev. Lett., 79 (1997), p. 3708
[12] Science, 73 (1994), p. 716
[13] Phys. Rev. Lett., 75 (1995), p. 2542
[14] Phys. Rev. Lett., 76 (1996), p. 952
[15] Phys. Rev. B, 53 (1996), p. 16334
[16] Science, 282 (1998), p. 734
[17] Mat. Res. Soc. Symp. Proc., 263 (1992), pp. 23-28
[18] Phys. Rev. B, 61 (2000), p. 13721
[19] Phys. Rev. Lett., 90 (2003), p. 086404
[20] Phys. Rev. B, 65 (2002), p. 081303
[21] Science, 291 (2001), p. 451
[22] Phys. Today, 54/4 (2001), p. 46 (See, e.g. and references therein)
[23] Phys. Rev. Lett., 76 (1996), p. 1675
[24] Phys. Rev. Lett., 82 (1999), p. 2528
[25] Phys. Rev. B, 60 (1999), p. 11524
[26] J. Cryst. Growth, 175/176 (1997), p. 707
[27] J. Vac. Sci. Technol. B, 16 (1998), p. 1575
[28] Appl. Phys. Lett., 74 (1999), p. 269
[29] Appl. Phys. Lett., 71 (1997), p. 3233
[30] Phys. Rev. B, 55 (1997), p. 15652
[31] Appl. Phys. Lett., 47 (1985), p. 1099
[32] Appl. Phys. Lett., 57 (1990), p. 2110
[33] Appl. Phys. Lett., 70 (1997), p. 955
[34] Appl. Phys. Lett., 74 (1999), p. 2608
[35] Appl. Phys. Lett., 72 (1998), p. 942
[36] Phys. Rev. B, 60 (1999), p. 8695
[37] Appl. Phys. Lett., 78 (2001), p. 3884
[38] Phys. Rev. Lett., 84 (2000), p. 4669
[39] Appl. Phys. Lett., 82 (2003), p. 799
[40] Phys. Rev. Lett., 83 (1999), p. 356
[41] Phys. Rev. B, 57 (1998), p. 12262
[42] Phys. Rev. B, 67 (2003), p. 165321
[43] Appl. Phys. Lett., 75 (1999), p. 1173
[44] J. Cryst. Growth, 21 (2000), p. 1803
[45] Appl. Surf. Sci., 162–163 (2000), p. 584
[46] Mater. Sci. Engrg. B, 101 (2003), p. 259
[47] Phys. Rev. B, 64 (2001), p. 125312
[48] Appl. Phys. Lett., 80 (2002), p. 1273
[49] Appl. Phys. Lett., 71 (1997), p. 1083
[50] Phys. Rev. B, 60 (1999), p. 5851
[51] J. Cryst. Growth, 201–202 (1999), p. 1190
[52] Appl. Phys. Lett., 74 (1999), p. 1272
[53] J. Cryst. Growth, 175/176 (1997), p. 713
[54] J. Vac. Sci. Technol. B, 20 (2002), p. 1259
[55] Appl. Phys. Lett., 78 (2001), p. 1736
[56] Appl. Phys. Lett., 71 (1997), p. 2972
[57] Appl. Phys. Lett., 75 (1999), p. 2632
[58] J. Appl. Phys., 66 (1989), p. 2741 (See, e.g. or Surf. Sci., 91, 1980, pp. 423)
[59] Rev. Mod. Phys., 76 (2004), p. 725
[60] X-Ray and Neutron Scattering in Nonideal Crystals, vol. I, Springer, Berlin, 1996
[61] J. Vac. Sci. Technol. B, 19 (2001), p. 1471
[62] Appl. Phys. Lett., 80 (2002), p. 1367
[63] Phys. Rev. Lett., 91 (2003), p. 196103
[64] Phys. Rev. Lett., 65 (1990), p. 1020
[65] Surf. Sci., 316 (1993), p. L1075
[66] Science, 279 (1998), p. 353
[67] Science, 286 (1999), p. 1931
[68] Appl. Phys. Lett., 78 (2001), p. 2309
[69] Appl. Phys. Lett., 201/202 (1999), p. 1126
[70] Appl. Phys. Lett., 82 (2003), p. 4779
[71] Appl. Phys. Lett., 82 (2003), p. 2892
[72] Appl. Phys. Lett., 71 (1997), p. 2014
[73] Appl. Phys. Lett., 82 (2003), p. 1706
[74] Appl. Phys. Lett., 77 (2000), p. 4139
[75] Appl. Phys. Lett., 66 (1995), p. 1620
[76] Appl. Phys. Lett., 78 (2001), p. 105
[77] J. Cryst. Growth, 223 (2001), p. 321
[78] Appl. Phys. Lett., 80 (2002), p. 497
[79] Appl. Phys. Lett., 80 (2002), p. 4626
[80] J. Cryst. Growth, 244 (2002), p. 129
[81] J. Cryst. Growth, 254 (2003), p. 1
[82] Microelectron. J., 34 (2003), p. 379
[83] J. Cryst. Growth, 59 (1994), p. 503 (See, e.g.)
[84] Handbook on Semiconductors, vol. 3 (T.S. Moss; S. Mahajan, eds.), Elsevier Science, Amsterdam, 1994, p. 1399
[85] Phys. Rev. B, 61 (2000), p. 16029
[86] Phys. Rev. B, 74 (1995), p. 4031
[87] Phys. Rev. Lett., 77 (1996), p. 2017
[88] Physica E, 9 (2001), p. 149
[89] Phys. Rep., 365 (2002), p. 335
Cited by Sources:
Comments - Policy