Comptes Rendus
Three-dimensional stacking of self-assembled quantum dots in multilayer structures
[Empilements tridimensionnels en multicouches de boîtes quantiques auto-assemblées]
Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 89-103.

L'auto-organisation tri-dimensionnelle d'îlots de matériaux semi-conducteurs par dépôt de multicouches permet de modifier substantiellement les propriétés des boîtes quantiques. Ces empilements peuvent résulter de plusieurs phénomènes (i) les déformations élastiques de la matrice résultant des contraintes liées aux boîtes (ii) des effets topographiques liés à la corrugation de la surface libre de la matrice (iii) une modulation chimique de la matrice. Ces trois effets peuvent conduire à un alignement vertical des boîtes en structures colonnaires, ou à des empilements inclinés, selon les mécanismes en jeu. En particulier, dans le cas des interactions élastiques les paramètres pertinents sont l'orientation de la surface, l'éventuelle anisotropie des propriétés élastiques de la matrice, la taille des boîtes et l'épaisseur de la matrice entre deux couches de boîtes. Des transitions entre différents types d'empilement peuvent ainsi être obtenues en jouant sur l'épaisseur des couches de matrice ou sur les conditions de croissance. La large palette d'effets mis en jeu devrait permettre la synthèse de nouveaux types de super-réseaux de boîtes, présentant des propriétés originales.

Three-dimensional stacking of semiconductor nano-islands in multilayers or superlattice structures provides a powerful tool for controlling the properties of self-assembled quantum dots. These stackings can be caused by several different mechanisms based on: (i) elastic interactions due to the strain fields of the buried dots; (ii) morphological interactions due to nonplanarized spacer topographies; or (iii) interactions based on chemical composition modulations within the spacer material. All three interactions may give rise to a vertical dot alignment in columns as well as to oblique or staggered dot stackings, depending on the details of the interaction mechanisms. For the interlayer correlations mediated by the elastic strain fields, the elastic anisotropy and surface orientation, but also the dot sizes and spacer layer thicknesses play a crucial role. As a result, transitions between different types of dot stackings can be induced as a function of spacer layer thicknesses and growth parameters. The large range of parameters involved in interlayer correlation formation may allow the controlled synthesis of new types of ordered structures with novel properties.

Publié le :
DOI : 10.1016/j.crhy.2004.11.001
Keywords: Quantum dots, Stranski–Krastanow growth mode, Self-organization, Superlattices, Molecular beam epitaxy, Self-assembly
Mots-clés : Boîtes quantiques, Croissance Stranski–Krastanow, Auto-organisation, Super-réseaux, Croissance par jets moléculaires, Auto-assemblage

Gunther Springholz 1

1 Institut für Halbleiter- und Festkörperphysik, Johannes Kepler Universität Linz, A-4040 Linz, Austria
@article{CRPHYS_2005__6_1_89_0,
     author = {Gunther Springholz},
     title = {Three-dimensional stacking of self-assembled quantum dots in multilayer structures},
     journal = {Comptes Rendus. Physique},
     pages = {89--103},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.001},
     language = {en},
}
TY  - JOUR
AU  - Gunther Springholz
TI  - Three-dimensional stacking of self-assembled quantum dots in multilayer structures
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 89
EP  - 103
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.001
LA  - en
ID  - CRPHYS_2005__6_1_89_0
ER  - 
%0 Journal Article
%A Gunther Springholz
%T Three-dimensional stacking of self-assembled quantum dots in multilayer structures
%J Comptes Rendus. Physique
%D 2005
%P 89-103
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.001
%G en
%F CRPHYS_2005__6_1_89_0
Gunther Springholz. Three-dimensional stacking of self-assembled quantum dots in multilayer structures. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 89-103. doi : 10.1016/j.crhy.2004.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.001/

[1] D. Bimberg; M. Grundmann; N.N. Ledentsov Quantum Dot Heterostructures, Wiley, Chichester, 1998

[2] D. Leonard; M. Krishnamurty; C.M. Reaves; S.P. Denbaar; P. Petroff Appl. Phys. Lett., 63 (1993), p. 3203

[3] J.M. Moison; F. Houzay; F. Barthe; L. Leprince; E. Andre; O. Vatel Appl. Phys. Lett., 64 (1994), p. 196

[4] V.A. Schchukin; N.N. Ledentsov; D. Bimberg Epitaxy of Nanostructures, Springer-Verlag, Berlin, 2004

[5] D.J. Srolovitz Acta Metall., 37 (1989), p. 621

[6] C.W. Snyder; B.G. Orr; D. Kessler; L.M. Sander Phys. Rev. Lett., 66 (1991), p. 3032

[7] D.J. Eaglesham; M. Cerullo Phys. Rev. Lett., 64 (1990), p. 1943

[8] H. Gao J. Mech. Solids, 39 (1991), p. 443

[9] C. Ratsch; A. Zangwill Surf. Sci., 293 (1993), p. 123

[10] J. Tersoff; F.K. LeGoues Phys. Rev. Lett., 72 (1994), p. 3570

[11] I. Daruka; A.-L. Barabási Phys. Rev. Lett., 79 (1997), p. 3708

[12] J.Y. Marzin; J.M. Gerard; A. Izrael; D. Barrier; G. Bastard; R. Leon; P.M. Petroff; D. Leonhard; S. Fafard Science, 73 (1994), p. 716

[13] Q. Xie; A. Madhukar; P. Chen; N. Kobayashi Phys. Rev. Lett., 75 (1995), p. 2542

[14] G.S. Solomon; J.A. Trezza; A.F. Marshall; J.S. Harris Phys. Rev. Lett., 76 (1996), p. 952

[15] C. Teichert; L.J. Peticolas; J.C. Bean; J. Tersoff; M.G. Lagally Phys. Rev. B, 53 (1996), p. 16334

[16] G. Springholz; V. Holy; M. Pinczolits; G. Bauer Science, 282 (1998), p. 734

[17] L. Vescan; W. Jäger; C. Dieker; K. Schmidt; A. Hartmann; H. Lüth Mat. Res. Soc. Symp. Proc., 263 (1992), pp. 23-28

[18] O.G. Schmidt; K. Eberl; O.G. Schmidt; K. Eberl; A. Rau Phys. Rev. B, 61 (2000), p. 13721

[19] G. Ortner; M. Bayer; A. Larionov; V.B. Timofeev; A. Forchel; Y.B. Lyanda-Geller; T.L. Reinecke; P. Hawrylak; S. Fafard; Z. Wasilewski Phys. Rev. Lett., 90 (2003), p. 086404

[20] I. Shtrichman; C. Metzner; B.D. Gerardot; W.V. Schoenfeld; P.M. Petroff Phys. Rev. B, 65 (2002), p. 081303

[21] M. Bayer; P. Hawrylak; K. Hinzer; S. Fafard; M. Korkusinski; Z.R. Wasilewski; O. Stern; A. Forchel Science, 291 (2001), p. 451

[22] P.M. Petroff; A. Lorke; A. Imamoglu Phys. Today, 54/4 (2001), p. 46 (See, e.g. and references therein)

[23] J. Tersoff; C. Teichert; M.G. Lagally Phys. Rev. Lett., 76 (1996), p. 1675

[24] F. Liu; S.E. Davenport; H.M. Evans; M.G. Lagally Phys. Rev. Lett., 82 (1999), p. 2528

[25] M. Pinczolits; Springholz; G. Bauer Phys. Rev. B, 60 (1999), p. 11524

[26] G.S. Solomon; S. Komarov; J.S. Harris; Y. Yamamoto J. Cryst. Growth, 175/176 (1997), p. 707

[27] P. Schittenhelm; C. Engel; F. Findeis; G. Abstreiter; A.A. Darhuber; G. Bauer; A.O. Kosogov; P. Werner J. Vac. Sci. Technol. B, 16 (1998), p. 1575

[28] O. Kienzle; F. Ernst; M. Rühle; O.G. Schmidt; K. Eberl Appl. Phys. Lett., 74 (1999), p. 269

[29] E. Mateeva; P. Sutter; J.C. Bean; M.G. Lagally Appl. Phys. Lett., 71 (1997), p. 3233

[30] A. Darhuber; P. Schittenhelm; V. Holy; J. Stangl; G. Bauer; G. Abstreiter Phys. Rev. B, 55 (1997), p. 15652

[31] L. Goldstein; F. Glas; J.Y. Marzin; M.N. Charasse; G. Le Roux Appl. Phys. Lett., 47 (1985), p. 1099

[32] S. Guha; A. Madhukar; K.C. Rajkumar Appl. Phys. Lett., 57 (1990), p. 2110

[33] A. Darhuber; V. Holy; J. Stangl; G. Bauer; A. Krost; F. Heinrichsdorff; M. Grundmann; D. Bimberg; V.M. Ustinov; P.S. Kop'ev; A.O. Kosogov; P. Werner Appl. Phys. Lett., 70 (1997), p. 955

[34] B. Legrand; J.P. Nys; B. Grandidier; D. Stievenard; A. Lemaitre; J.M. Gerard; V. Thierry-Mieg Appl. Phys. Lett., 74 (1999), p. 2608

[35] M. Strassburg; V. Kutzer; U.W. Pohl; A. Hoffmann; I. Broser; N.N. Ledentsov; D. Bimberg; A. Rosenauer; U. Fischer; D. Gerthsen; I.L. Krestnikov; M.V. Maximov; P.S. Kop'ev; Zh.I. Alverov Appl. Phys. Lett., 72 (1998), p. 942

[36] L. Krestnikov; M. Straßburg; M. Caesar; A. Hoffmann; U.W. Pohl; D. Bimberg; N.N. Ledentsov; P.S. Kop'ev; Zh.I. Alferov; D. Litvinov; A. Rosenauer; D. Gerthsen Phys. Rev. B, 60 (1999), p. 8695

[37] G. Mackowski; G. Karczewski; T. Wojtowicz; J. Kossut; S. Kret; A. Szczepanska; P. Duczewski; G. Prechtl; W. Heiss Appl. Phys. Lett., 78 (2001), p. 3884

[38] G. Springholz; M. Pinczolits; P. Mayer; V. Holy; G. Bauer; H.H. Kang; L. Salamanca-Riba Phys. Rev. Lett., 84 (2000), p. 4669

[39] G. Springholz; A. Raab; R.T. Lechner; V. Holy Appl. Phys. Lett., 82 (2003), p. 799

[40] V. Holy; G. Springholz; M. Pinczolits; G. Bauer Phys. Rev. Lett., 83 (1999), p. 356

[41] V.A. Shchukin; D. Bimberg; V.G. Malyshkin; N.N. Ledentsov Phys. Rev. B, 57 (1998), p. 12262

[42] A. Raab; G. Springholz; R.T. Lechner Phys. Rev. B, 67 (2003), p. 165321

[43] H. Li; J. Wu; Z. Wang; T. Daniels-Race Appl. Phys. Lett., 75 (1999), p. 1173

[44] J. Wu; Y.P. Zeng; Z.Z. Sun; F. Lin; B. Xu; Z.G. Wang J. Cryst. Growth, 21 (2000), p. 1803

[45] J. Brault; M. Gendry; O. Marty; M. Pitaval; J. Olivares; G. Grenet; G. Hollinger Appl. Surf. Sci., 162–163 (2000), p. 584

[46] B. Salem; G. Brèmond; M. Hjiri; F. Hassen; H. Maaref; O. Marty; J. Brault; M. Gendry Mater. Sci. Engrg. B, 101 (2003), p. 259

[47] C. Priester; G. Grenet Phys. Rev. B, 64 (2001), p. 125312

[48] A. Raab; R.T. Lechner; G. Springholz Appl. Phys. Lett., 80 (2002), p. 1273

[49] W. Wu; J.R. Tucker; G.S. Solomon; J.S. Harris Appl. Phys. Lett., 71 (1997), p. 1083

[50] Vinh Le Thanh; V. Yam; P. Boucaud; F. Fortune; C. Ulysse; D. Bouchier; L. Vervoort; J.-M. Lourtioz Phys. Rev. B, 60 (1999), p. 5851

[51] G.S. Solomon; S. Komarov; J.S. Harris J. Cryst. Growth, 201–202 (1999), p. 1190

[52] O.G. Schmidt; O. Kienzle; Y. Hao; K. Eberl; F. Ernst Appl. Phys. Lett., 74 (1999), p. 1272

[53] Y. Nakata; Y. Sugiyama; T. Fuatsugi; N. Yokoyama J. Cryst. Growth, 175/176 (1997), p. 713

[54] Vinh Le Thanh; V. Yam; L.H. Nguyen; Y. Zheng; P. Boucaud; D. Débarre; D. Bouchier J. Vac. Sci. Technol. B, 20 (2002), p. 1259

[55] P. Sutter; E. Mateeva-Sutter; L. Vescan Appl. Phys. Lett., 78 (2001), p. 1736

[56] M.K. Zundel; P. Specht; K. Eberl; N.Y. Jin-Philipp; F. Philipp Appl. Phys. Lett., 71 (1997), p. 2972

[57] J.L. Rouviere; J. Simon; N. Pelekanos; B. Daudin; G. Feullet Appl. Phys. Lett., 75 (1999), p. 2632

[58] S.M. Hu; A.A. Maradudin; R.F. Wallis J. Appl. Phys., 66 (1989), p. 2741 (See, e.g. or Surf. Sci., 91, 1980, pp. 423)

[59] J. Stangl; V. Holy; G. Bauer Rev. Mod. Phys., 76 (2004), p. 725

[60] M.A. Krivoglaz X-Ray and Neutron Scattering in Nonideal Crystals, vol. I, Springer, Berlin, 1996

[61] H. Li; T. Daniels-Race; M.-A. Hasan J. Vac. Sci. Technol. B, 19 (2001), p. 1471

[62] H. Li; T. Daniels-Race; M.-A. Hasan Appl. Phys. Lett., 80 (2002), p. 1367

[63] H. Heidemeyer; U. Denker; C. Müller; O.G. Schmidt Phys. Rev. Lett., 91 (2003), p. 196103

[64] Y.W. Mo; D.E. Savage; B.S. Schwartzentruber; M.G. Lagally Phys. Rev. Lett., 65 (1990), p. 1020

[65] M.A. Lutz; R.M. Feenstra; P.M. Mooney; J. Tersoff; O.J. Chu Surf. Sci., 316 (1993), p. L1075

[66] G. Medeiros-Ribeiro; A.M. Bratkovski; T.I. Kamins; D.A.A. Ohlberg; R.S. Williams Science, 279 (1998), p. 353

[67] F.M. Ross; R.M. Tromp; M.C. Reuter Science, 286 (1999), p. 1931

[68] J. Marquez; L. Geelhaar; K. Jacobi Appl. Phys. Lett., 78 (2001), p. 2309

[69] M. Pinczolits; G. Springholz; G. Bauer; M. Pinczolits; G. Springholz; G. Bauer Appl. Phys. Lett., 201/202 (1999), p. 1126

[70] Z. Zhong; A. Halilovic; T. Fromherz; F. Schäffler; G. Bauer; Z. Zhong; G. Bauer Appl. Phys. Lett., 82 (2003), p. 4779

[71] R. Songmuang; S. Kiravittaya; O.G. Schmidt Appl. Phys. Lett., 82 (2003), p. 2892

[72] J.M. García; G. Medeiros-Ribeiro; K. Schmidt; T. Ngo; J.L. Feng; A. Lorke; J. Kotthaus; P.M. Petroff Appl. Phys. Lett., 71 (1997), p. 2014

[73] T. Raz; D. Ritter; G. Bahir Appl. Phys. Lett., 82 (2003), p. 1706

[74] O.G. Schmidt; N.Y.J. Phillipp; C. Lange; U. Denker; K. Eberl; R. Schreiner; H. Gräbeldinger; H. Schweizer Appl. Phys. Lett., 77 (2000), p. 4139

[75] D.S.L. Mui; D. Leonard; L.A. Coldren; P.M. Petroff Appl. Phys. Lett., 66 (1995), p. 1620

[76] H. Lee; J.A. Johnson; M.Y. He; J.S. Speck; P.M. Petroff Appl. Phys. Lett., 78 (2001), p. 105

[77] R.L. Williams; G.C. Aers; P.J. Poole; J. Lefebvre; D. Chithrani; B. Lamontagne J. Cryst. Growth, 223 (2001), p. 321

[78] T. Kitajima; B. Liu; S.R. Leone Appl. Phys. Lett., 80 (2002), p. 497

[79] E. Tevaarwerk; P. Rugheimer; O.M. Castellini; D.G. Keppel; S.T. Utley; D.E. Savage; M.G. Lagally; M.A. Eriksson Appl. Phys. Lett., 80 (2002), p. 4626

[80] A. Fantini; F. Phillipp; C. Kohler; J. Porsche; F. Scholz J. Cryst. Growth, 244 (2002), p. 129

[81] H.R. Gutierrez; M.A. Cotta; M.M.G. de Carvalho J. Cryst. Growth, 254 (2003), p. 1

[82] Z.G. Wang; J. Wu Microelectron. J., 34 (2003), p. 379

[83] M. Horn-von-Hoegen; E. Tournie; N. Grandjean; A. Trampert; J. Massies; K. Ploog J. Cryst. Growth, 59 (1994), p. 503 (See, e.g.)

[84] A. Zunger; S. Mahajan Handbook on Semiconductors, vol. 3 (T.S. Moss; S. Mahajan, eds.), Elsevier Science, Amsterdam, 1994, p. 1399

[85] C. Priester; G. Grenet Phys. Rev. B, 61 (2000), p. 16029

[86] J.E. Guyer; P.W. Voorhees; J.E. Guyer; P.W. Voorhees Phys. Rev. B, 74 (1995), p. 4031

[87] J. Tersoff; B.J. Spencer; P.W. Voorhees; J. Tersoff Phys. Rev. Lett., 77 (1996), p. 2017

[88] G. Springholz; M. Pinczolitsa; V. Holy; S. Zerlautha; I. Vavra; G. Bauer Physica E, 9 (2001), p. 149

[89] C. Teichert Phys. Rep., 365 (2002), p. 335

  • C.A. Mercado-Ornelas; L.I. Espinosa-Vega; I.E. Cortes-Mestizo; F.E. Perea-Parrales; A. Belio-Manzano; V.H. Méndez-Garcia Nucleation and diffusion processes during the stacking of bilayer quantum dot InAs/GaAs heterostructures, Journal of Crystal Growth, Volume 555 (2021), p. 125959 | DOI:10.1016/j.jcrysgro.2020.125959
  • N. Ruiz-Marín; D.F. Reyes; V. Braza; S. Flores; A. Gonzalo; J.M. Ulloa; T. Ben; D. González Formation mechanisms of agglomerations in high-density InAs/GaAs quantum dot multi-layer structures, Applied Surface Science, Volume 508 (2020), p. 145218 | DOI:10.1016/j.apsusc.2019.145218
  • Gunther Springholz Molecular Beam Epitaxy of IV–VI Semiconductors, Molecular Beam Epitaxy (2018), p. 211 | DOI:10.1016/b978-0-12-812136-8.00011-6
  • J. Hernández-Saz; M. Herrera; S.I. Molina; C.R. Stanley; S. Duguay Atom probe tomography analysis of InAlGaAs capped InAs/GaAs stacked quantum dots with variable barrier layer thickness, Acta Materialia, Volume 103 (2016), p. 651 | DOI:10.1016/j.actamat.2015.10.048
  • V I Punegov High-resolution X-ray diffraction in crystalline structures with quantum dots, Physics-Uspekhi, Volume 58 (2015) no. 5, p. 419 | DOI:10.3367/ufne.0185.201505a.0449
  • Vasilii I. Punegov High-resolution X-ray diffraction in crystalline structures with quantum dots, Uspekhi Fizicheskih Nauk, Volume 185 (2015) no. 5, p. 449 | DOI:10.3367/ufnr.0185.201505a.0449
  • Jesús Hernández-Saz; Miriam Herrera; Sergio I. Molina Fabrication of Needle-Shaped Specimens Containing Subsurface Nanostructures for Electron Tomography, FIB Nanostructures, Volume 20 (2013), p. 241 | DOI:10.1007/978-3-319-02874-3_9
  • G. Springholz; G. Bauer 9.6 Self-assembled Stranski-Krastanow quantum dots, Growth and Structuring (2013), p. 501 | DOI:10.1007/978-3-540-68357-5_93
  • G. Springholz; G. Bauer 9.6.2 Ordering and stacking in quantum-dot superlattices, Growth and Structuring (2013), p. 507 | DOI:10.1007/978-3-540-68357-5_95
  • G. Springholz; G. Bauer 9.6.3 Ordering mechanisms, Growth and Structuring (2013), p. 514 | DOI:10.1007/978-3-540-68357-5_96
  • N. Shtinkov Strain-induced vertical self-organization of semiconductor quantum dots: A computational study, Journal of Applied Physics, Volume 114 (2013) no. 24 | DOI:10.1063/1.4858382
  • Gunther Springholz Molecular beam epitaxy of IV–VI semiconductors, Molecular Beam Epitaxy (2013), p. 263 | DOI:10.1016/b978-0-12-387839-7.00013-0
  • Zhen Xing Li; Akinori Yamanaka; Masahiko Yoshino A New Process to Fabricate Three Dimensional Ordered Nano Dot Array Structures by Nano Plastic Forming and Dewetting, Key Engineering Materials, Volume 523-524 (2012), p. 627 | DOI:10.4028/www.scientific.net/kem.523-524.627
  • Jesús Hernández-Saz; Miriam Herrera; Diego Alonso-Álvarez; Sergio I Molina Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography, Nanoscale Research Letters, Volume 7 (2012) no. 1 | DOI:10.1186/1556-276x-7-681
  • Zhenxing Li; Masahiko Yoshino; Akinori Yamanaka Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method, Nanotechnology, Volume 23 (2012) no. 48, p. 485303 | DOI:10.1088/0957-4484/23/48/485303
  • P. Wojnar; C. Bougerol; E. Bellet-Amalric; L. Besombes; H. Mariette; H. Boukari Towards vertical coupling of CdTe/ZnTe quantum dots formed by a high temperature tellurium induced process, Journal of Crystal Growth, Volume 335 (2011) no. 1, p. 28 | DOI:10.1016/j.jcrysgro.2011.09.024
  • K. Cui; B. J. Robinson; D. A. Thompson; G. A. Botton InAs quantum wire induced composition modulation in an In0.53Ga0.37Al0.10As barrier layer grown on an InP substrate, Journal of Applied Physics, Volume 108 (2010) no. 3 | DOI:10.1063/1.3460643
  • K. Cui; B.J. Robinson; D.A. Thompson; G.A. Botton Stacking pattern of multi-layer InAs quantum wires embedded in In0.53Ga0.47−xAlxAs matrix layers grown lattice-matched on InP substrate, Journal of Crystal Growth, Volume 312 (2010) no. 19, p. 2637 | DOI:10.1016/j.jcrysgro.2010.06.002
  • Liu Yu-Min; Yu Zhong-Yuan; Ren Xiao-Min The influences of thickness of spacing layer and the elastic anisotropy on the strain fields and band edges of InAs/GaAs conical shaped quantum dots, Chinese Physics B, Volume 18 (2009) no. 1, p. 16 | DOI:10.1088/1674-1056/18/1/003
  • M Buljan; U V Desnica; G Dražić; M Ivanda; N Radić; P Dubček; K Salamon; S Bernstorff; V Holý The influence of deposition temperature on the correlation of Ge quantum dot positions in amorphous silica matrix, Nanotechnology, Volume 20 (2009) no. 8, p. 085612 | DOI:10.1088/0957-4484/20/8/085612
  • M. Buljan; U. V. Desnica; M. Ivanda; N. Radić; P. Dubček; G. Dražić; K. Salamon; S. Bernstorff; V. Holý Formation of three-dimensional quantum-dot superlattices in amorphous systems: Experiments and Monte Carlo simulations, Physical Review B, Volume 79 (2009) no. 3 | DOI:10.1103/physrevb.79.035310
  • Vaclav Holý; Julian Stangl; Thomas Fromherz; Rainer T. Lechner; Eugene Wintersberger; Günther Bauer; Christian Dais; Elisabeth Müller; Detlev Grützmacher X-ray diffraction investigation of a three-dimensional Si/SiGe quantum dot crystal, Physical Review B, Volume 79 (2009) no. 3 | DOI:10.1103/physrevb.79.035324
  • Y. Ni; A. K. Soh; L. H. He Dynamics of Self-Organized Epitaxial Island Formation under Controlled Annealing, IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, Volume 144 (2007), p. 219 | DOI:10.1007/978-1-4020-5624-6_22
  • M. S. Levine; A. A. Golovin; S. H. Davis; P. W. Voorhees Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Physical Review B, Volume 75 (2007) no. 20 | DOI:10.1103/physrevb.75.205312
  • Qiyang Hu; Nasr M. Ghoniem; Daniel Walgraef Influence of substrate-mediated interactions on the self-organization of adatom clusters, Physical Review B, Volume 75 (2007) no. 7 | DOI:10.1103/physrevb.75.075405
  • Gunther Springholz; Günther Bauer Molecular beam epitaxy of IV–VI semiconductor hetero‐ and nano‐structures, physica status solidi (b), Volume 244 (2007) no. 8, p. 2752 | DOI:10.1002/pssb.200675616
  • J-M Baribeau; X Wu; N L Rowell; D J Lockwood Ge dots and nanostructures grown epitaxially on Si, Journal of Physics: Condensed Matter, Volume 18 (2006) no. 8, p. R139 | DOI:10.1088/0953-8984/18/8/r01
  • J-M. Baribeau; N.L. Rowell; D.J. Lockwood Advances in the growth and characterization of Ge quantum dots and islands, Journal of Materials Research, Volume 20 (2005) no. 12, p. 3278 | DOI:10.1557/jmr.2005.0405

Cité par 28 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: