[Empilements tridimensionnels en multicouches de boîtes quantiques auto-assemblées]
L'auto-organisation tri-dimensionnelle d'îlots de matériaux semi-conducteurs par dépôt de multicouches permet de modifier substantiellement les propriétés des boîtes quantiques. Ces empilements peuvent résulter de plusieurs phénomènes (i) les déformations élastiques de la matrice résultant des contraintes liées aux boîtes (ii) des effets topographiques liés à la corrugation de la surface libre de la matrice (iii) une modulation chimique de la matrice. Ces trois effets peuvent conduire à un alignement vertical des boîtes en structures colonnaires, ou à des empilements inclinés, selon les mécanismes en jeu. En particulier, dans le cas des interactions élastiques les paramètres pertinents sont l'orientation de la surface, l'éventuelle anisotropie des propriétés élastiques de la matrice, la taille des boîtes et l'épaisseur de la matrice entre deux couches de boîtes. Des transitions entre différents types d'empilement peuvent ainsi être obtenues en jouant sur l'épaisseur des couches de matrice ou sur les conditions de croissance. La large palette d'effets mis en jeu devrait permettre la synthèse de nouveaux types de super-réseaux de boîtes, présentant des propriétés originales.
Three-dimensional stacking of semiconductor nano-islands in multilayers or superlattice structures provides a powerful tool for controlling the properties of self-assembled quantum dots. These stackings can be caused by several different mechanisms based on: (i) elastic interactions due to the strain fields of the buried dots; (ii) morphological interactions due to nonplanarized spacer topographies; or (iii) interactions based on chemical composition modulations within the spacer material. All three interactions may give rise to a vertical dot alignment in columns as well as to oblique or staggered dot stackings, depending on the details of the interaction mechanisms. For the interlayer correlations mediated by the elastic strain fields, the elastic anisotropy and surface orientation, but also the dot sizes and spacer layer thicknesses play a crucial role. As a result, transitions between different types of dot stackings can be induced as a function of spacer layer thicknesses and growth parameters. The large range of parameters involved in interlayer correlation formation may allow the controlled synthesis of new types of ordered structures with novel properties.
Mots-clés : Boîtes quantiques, Croissance Stranski–Krastanow, Auto-organisation, Super-réseaux, Croissance par jets moléculaires, Auto-assemblage
Gunther Springholz 1
@article{CRPHYS_2005__6_1_89_0, author = {Gunther Springholz}, title = {Three-dimensional stacking of self-assembled quantum dots in multilayer structures}, journal = {Comptes Rendus. Physique}, pages = {89--103}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.001}, language = {en}, }
Gunther Springholz. Three-dimensional stacking of self-assembled quantum dots in multilayer structures. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 89-103. doi : 10.1016/j.crhy.2004.11.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.001/
[1] Quantum Dot Heterostructures, Wiley, Chichester, 1998
[2] Appl. Phys. Lett., 63 (1993), p. 3203
[3] Appl. Phys. Lett., 64 (1994), p. 196
[4] Epitaxy of Nanostructures, Springer-Verlag, Berlin, 2004
[5] Acta Metall., 37 (1989), p. 621
[6] Phys. Rev. Lett., 66 (1991), p. 3032
[7] Phys. Rev. Lett., 64 (1990), p. 1943
[8] J. Mech. Solids, 39 (1991), p. 443
[9] Surf. Sci., 293 (1993), p. 123
[10] Phys. Rev. Lett., 72 (1994), p. 3570
[11] Phys. Rev. Lett., 79 (1997), p. 3708
[12] Science, 73 (1994), p. 716
[13] Phys. Rev. Lett., 75 (1995), p. 2542
[14] Phys. Rev. Lett., 76 (1996), p. 952
[15] Phys. Rev. B, 53 (1996), p. 16334
[16] Science, 282 (1998), p. 734
[17] Mat. Res. Soc. Symp. Proc., 263 (1992), pp. 23-28
[18] Phys. Rev. B, 61 (2000), p. 13721
[19] Phys. Rev. Lett., 90 (2003), p. 086404
[20] Phys. Rev. B, 65 (2002), p. 081303
[21] Science, 291 (2001), p. 451
[22] Phys. Today, 54/4 (2001), p. 46 (See, e.g. and references therein)
[23] Phys. Rev. Lett., 76 (1996), p. 1675
[24] Phys. Rev. Lett., 82 (1999), p. 2528
[25] Phys. Rev. B, 60 (1999), p. 11524
[26] J. Cryst. Growth, 175/176 (1997), p. 707
[27] J. Vac. Sci. Technol. B, 16 (1998), p. 1575
[28] Appl. Phys. Lett., 74 (1999), p. 269
[29] Appl. Phys. Lett., 71 (1997), p. 3233
[30] Phys. Rev. B, 55 (1997), p. 15652
[31] Appl. Phys. Lett., 47 (1985), p. 1099
[32] Appl. Phys. Lett., 57 (1990), p. 2110
[33] Appl. Phys. Lett., 70 (1997), p. 955
[34] Appl. Phys. Lett., 74 (1999), p. 2608
[35] Appl. Phys. Lett., 72 (1998), p. 942
[36] Phys. Rev. B, 60 (1999), p. 8695
[37] Appl. Phys. Lett., 78 (2001), p. 3884
[38] Phys. Rev. Lett., 84 (2000), p. 4669
[39] Appl. Phys. Lett., 82 (2003), p. 799
[40] Phys. Rev. Lett., 83 (1999), p. 356
[41] Phys. Rev. B, 57 (1998), p. 12262
[42] Phys. Rev. B, 67 (2003), p. 165321
[43] Appl. Phys. Lett., 75 (1999), p. 1173
[44] J. Cryst. Growth, 21 (2000), p. 1803
[45] Appl. Surf. Sci., 162–163 (2000), p. 584
[46] Mater. Sci. Engrg. B, 101 (2003), p. 259
[47] Phys. Rev. B, 64 (2001), p. 125312
[48] Appl. Phys. Lett., 80 (2002), p. 1273
[49] Appl. Phys. Lett., 71 (1997), p. 1083
[50] Phys. Rev. B, 60 (1999), p. 5851
[51] J. Cryst. Growth, 201–202 (1999), p. 1190
[52] Appl. Phys. Lett., 74 (1999), p. 1272
[53] J. Cryst. Growth, 175/176 (1997), p. 713
[54] J. Vac. Sci. Technol. B, 20 (2002), p. 1259
[55] Appl. Phys. Lett., 78 (2001), p. 1736
[56] Appl. Phys. Lett., 71 (1997), p. 2972
[57] Appl. Phys. Lett., 75 (1999), p. 2632
[58] J. Appl. Phys., 66 (1989), p. 2741 (See, e.g. or Surf. Sci., 91, 1980, pp. 423)
[59] Rev. Mod. Phys., 76 (2004), p. 725
[60] X-Ray and Neutron Scattering in Nonideal Crystals, vol. I, Springer, Berlin, 1996
[61] J. Vac. Sci. Technol. B, 19 (2001), p. 1471
[62] Appl. Phys. Lett., 80 (2002), p. 1367
[63] Phys. Rev. Lett., 91 (2003), p. 196103
[64] Phys. Rev. Lett., 65 (1990), p. 1020
[65] Surf. Sci., 316 (1993), p. L1075
[66] Science, 279 (1998), p. 353
[67] Science, 286 (1999), p. 1931
[68] Appl. Phys. Lett., 78 (2001), p. 2309
[69] Appl. Phys. Lett., 201/202 (1999), p. 1126
[70] Appl. Phys. Lett., 82 (2003), p. 4779
[71] Appl. Phys. Lett., 82 (2003), p. 2892
[72] Appl. Phys. Lett., 71 (1997), p. 2014
[73] Appl. Phys. Lett., 82 (2003), p. 1706
[74] Appl. Phys. Lett., 77 (2000), p. 4139
[75] Appl. Phys. Lett., 66 (1995), p. 1620
[76] Appl. Phys. Lett., 78 (2001), p. 105
[77] J. Cryst. Growth, 223 (2001), p. 321
[78] Appl. Phys. Lett., 80 (2002), p. 497
[79] Appl. Phys. Lett., 80 (2002), p. 4626
[80] J. Cryst. Growth, 244 (2002), p. 129
[81] J. Cryst. Growth, 254 (2003), p. 1
[82] Microelectron. J., 34 (2003), p. 379
[83] J. Cryst. Growth, 59 (1994), p. 503 (See, e.g.)
[84] Handbook on Semiconductors, vol. 3 (T.S. Moss; S. Mahajan, eds.), Elsevier Science, Amsterdam, 1994, p. 1399
[85] Phys. Rev. B, 61 (2000), p. 16029
[86] Phys. Rev. B, 74 (1995), p. 4031
[87] Phys. Rev. Lett., 77 (1996), p. 2017
[88] Physica E, 9 (2001), p. 149
[89] Phys. Rep., 365 (2002), p. 335
- Nucleation and diffusion processes during the stacking of bilayer quantum dot InAs/GaAs heterostructures, Journal of Crystal Growth, Volume 555 (2021), p. 125959 | DOI:10.1016/j.jcrysgro.2020.125959
- Formation mechanisms of agglomerations in high-density InAs/GaAs quantum dot multi-layer structures, Applied Surface Science, Volume 508 (2020), p. 145218 | DOI:10.1016/j.apsusc.2019.145218
- Molecular Beam Epitaxy of IV–VI Semiconductors, Molecular Beam Epitaxy (2018), p. 211 | DOI:10.1016/b978-0-12-812136-8.00011-6
- Atom probe tomography analysis of InAlGaAs capped InAs/GaAs stacked quantum dots with variable barrier layer thickness, Acta Materialia, Volume 103 (2016), p. 651 | DOI:10.1016/j.actamat.2015.10.048
- High-resolution X-ray diffraction in crystalline structures with quantum dots, Physics-Uspekhi, Volume 58 (2015) no. 5, p. 419 | DOI:10.3367/ufne.0185.201505a.0449
- High-resolution X-ray diffraction in crystalline structures with quantum dots, Uspekhi Fizicheskih Nauk, Volume 185 (2015) no. 5, p. 449 | DOI:10.3367/ufnr.0185.201505a.0449
- Fabrication of Needle-Shaped Specimens Containing Subsurface Nanostructures for Electron Tomography, FIB Nanostructures, Volume 20 (2013), p. 241 | DOI:10.1007/978-3-319-02874-3_9
- 9.6 Self-assembled Stranski-Krastanow quantum dots, Growth and Structuring (2013), p. 501 | DOI:10.1007/978-3-540-68357-5_93
- 9.6.2 Ordering and stacking in quantum-dot superlattices, Growth and Structuring (2013), p. 507 | DOI:10.1007/978-3-540-68357-5_95
- 9.6.3 Ordering mechanisms, Growth and Structuring (2013), p. 514 | DOI:10.1007/978-3-540-68357-5_96
- Strain-induced vertical self-organization of semiconductor quantum dots: A computational study, Journal of Applied Physics, Volume 114 (2013) no. 24 | DOI:10.1063/1.4858382
- Molecular beam epitaxy of IV–VI semiconductors, Molecular Beam Epitaxy (2013), p. 263 | DOI:10.1016/b978-0-12-387839-7.00013-0
- A New Process to Fabricate Three Dimensional Ordered Nano Dot Array Structures by Nano Plastic Forming and Dewetting, Key Engineering Materials, Volume 523-524 (2012), p. 627 | DOI:10.4028/www.scientific.net/kem.523-524.627
- Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography, Nanoscale Research Letters, Volume 7 (2012) no. 1 | DOI:10.1186/1556-276x-7-681
- Fabrication of three-dimensional ordered nanodot array structures by a thermal dewetting method, Nanotechnology, Volume 23 (2012) no. 48, p. 485303 | DOI:10.1088/0957-4484/23/48/485303
- Towards vertical coupling of CdTe/ZnTe quantum dots formed by a high temperature tellurium induced process, Journal of Crystal Growth, Volume 335 (2011) no. 1, p. 28 | DOI:10.1016/j.jcrysgro.2011.09.024
- InAs quantum wire induced composition modulation in an In0.53Ga0.37Al0.10As barrier layer grown on an InP substrate, Journal of Applied Physics, Volume 108 (2010) no. 3 | DOI:10.1063/1.3460643
- Stacking pattern of multi-layer InAs quantum wires embedded in In0.53Ga0.47−xAlxAs matrix layers grown lattice-matched on InP substrate, Journal of Crystal Growth, Volume 312 (2010) no. 19, p. 2637 | DOI:10.1016/j.jcrysgro.2010.06.002
- The influences of thickness of spacing layer and the elastic anisotropy on the strain fields and band edges of InAs/GaAs conical shaped quantum dots, Chinese Physics B, Volume 18 (2009) no. 1, p. 16 | DOI:10.1088/1674-1056/18/1/003
- The influence of deposition temperature on the correlation of Ge quantum dot positions in amorphous silica matrix, Nanotechnology, Volume 20 (2009) no. 8, p. 085612 | DOI:10.1088/0957-4484/20/8/085612
- Formation of three-dimensional quantum-dot superlattices in amorphous systems: Experiments and Monte Carlo simulations, Physical Review B, Volume 79 (2009) no. 3 | DOI:10.1103/physrevb.79.035310
- X-ray diffraction investigation of a three-dimensional Si/SiGe quantum dot crystal, Physical Review B, Volume 79 (2009) no. 3 | DOI:10.1103/physrevb.79.035324
- Dynamics of Self-Organized Epitaxial Island Formation under Controlled Annealing, IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, Volume 144 (2007), p. 219 | DOI:10.1007/978-1-4020-5624-6_22
- Self-assembly of quantum dots in a thin epitaxial film wetting an elastic substrate, Physical Review B, Volume 75 (2007) no. 20 | DOI:10.1103/physrevb.75.205312
- Influence of substrate-mediated interactions on the self-organization of adatom clusters, Physical Review B, Volume 75 (2007) no. 7 | DOI:10.1103/physrevb.75.075405
- Molecular beam epitaxy of IV–VI semiconductor hetero‐ and nano‐structures, physica status solidi (b), Volume 244 (2007) no. 8, p. 2752 | DOI:10.1002/pssb.200675616
- Ge dots and nanostructures grown epitaxially on Si, Journal of Physics: Condensed Matter, Volume 18 (2006) no. 8, p. R139 | DOI:10.1088/0953-8984/18/8/r01
- Advances in the growth and characterization of Ge quantum dots and islands, Journal of Materials Research, Volume 20 (2005) no. 12, p. 3278 | DOI:10.1557/jmr.2005.0405
Cité par 28 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier