The coupling of standard self-organization methods with surface artificial nanostructuring has recently emerged as a promising technique in semiconductor materials to control simultaneously the size distribution, the density and the position of epitaxial nanostructures. Some physical aspects of the morphology and elastic strain engineering are reviewed in this article. The emphasis is on the effects of capillarity, growth rate anisotropy, strain relaxation and entropy of mixing for alloys. The interplay among these driving forces is first illustrated by III–V compound semiconductor growth on lithographically patterned surfaces, then by germanium growth on implanted substrates and nanopatterned templates obtained by chemical etching of buried strain dislocation networks.
Le couplage de méthodes classiques d'auto-organisation avec des nanostructurations artificielles de surfaces s'est récemment avéré être une excellente technique dans les matériaux semi-conducteurs pour contrôler simultanément la taille, la densité et la position de nanostructures épitaxiées. Certains aspects physiques concernant l'ingénierie de la morphologie et de la contrainte élastique sont passés en revue dans cet article. L'accent est mis sur les effets de capillarité, d'anisotropie de la vitesse de croissance, de relaxation de contrainte et d'entropie de mélange pour les alliages. L'interaction entre ces différentes forces motrices est illustrée en premier par la croissance de composés de semi-conducteurs III–V sur des surfaces obtenues par lithographie, puis par la croissance de germanium sur des substrats implantés et sur des surfaces nanostructurées obtenues par attaque chimique de réseaux de dislocations enterrées.
Mots-clés : Nanostructuration de surface, Auto-organisation, Croissance épitaxiale, Ingénierie de contrainte et de courbure
J. Eymery 1; G. Biasiol 2; E. Kapon 2; T. Ogino 3
@article{CRPHYS_2005__6_1_105_0, author = {J. Eymery and G. Biasiol and E. Kapon and T. Ogino}, title = {Nanometric artificial structuring of semiconductor surfaces for crystalline growth}, journal = {Comptes Rendus. Physique}, pages = {105--116}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.006}, language = {en}, }
TY - JOUR AU - J. Eymery AU - G. Biasiol AU - E. Kapon AU - T. Ogino TI - Nanometric artificial structuring of semiconductor surfaces for crystalline growth JO - Comptes Rendus. Physique PY - 2005 SP - 105 EP - 116 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.006 LA - en ID - CRPHYS_2005__6_1_105_0 ER -
J. Eymery; G. Biasiol; E. Kapon; T. Ogino. Nanometric artificial structuring of semiconductor surfaces for crystalline growth. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 105-116. doi : 10.1016/j.crhy.2004.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.006/
[1] New development of nanoimprint technology, J. Phys. D, Volume 37 (2004), p. R123
[2] Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci., Volume 365 (1996), p. L647
[3] Structure of AlAs–GaAs interfaces grown on vicinal surfaces by molecular beam epitaxy, Appl. Phys. Lett., Volume 45 (1984), p. 620
[4] Nanoscale structuring by misfit dislocations in Si1−xGex/Si epitaxial systems, Phys. Rev. Lett., Volume 78 (1997), p. 503
[5] Physique de la Croissance Cristalline, Collection Aléa-Saclay, Eyrolles, 1995 (ISBN: 2-212-05800-4)
[6] Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333
[7] Diffusional viscosity of a polycrystalline solid, J. Appl. Phys., Volume 21 (1950), p. 437
[8] Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004), p. 025502
[9] Quadruples of Ge dots grown on patterned Si surfaces, J. Cryst. Growth, Volume 259 (2003), p. 262
[10] Controlled arrangement of self-organized Ge islands on patterned Si (0 0 1) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752
[11] Material Fundamentals of Molecular Beam Epitaxy, Academic Press, Boston, 1993
[12] Strain-engineered self-assembled semiconductor quantum dot lattices, Appl. Phys. Lett., Volume 78 (2001), p. 105
[13] Self-assembling quantum dot lattices through nucleation site engineering, J. Cryst. Growth, Volume 236 (2002), p. 647
[14] Stimulated emission in semiconductor quantum wire heterostructures, Phys. Rev. Lett., Volume 63 (1989), p. 430
[15] Atmospheric and low-pressure metalorganic vapor-phase epitaxial-growth of vertical quantum-wells and quantum-well wires on submicron gratings, J. Electron. Mater., Volume 23 (1994), p. 121
[16] Low-pressure organometallic chemical vapour deposition of quantum wires on V-grooved substrates, Appl. Phys. Lett., Volume 67 (1995), p. 3673
[17] Flow rate modulation epitaxy of AlGaAs/GaAs quantum wires on nonplanar substrate, Appl. Phys. Lett., Volume 66 (1995), p. 1506
[18] Formation of GaAs ridge quantum wire structures by molecular beam epitaxy on patterned substrates, Appl. Phys. Lett., Volume 64 (1994), p. 363
[19] Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates, Appl. Phys. Lett., Volume 71 (1997), p. 1314
[20] Structure and formation mechanisms of AlGaAs V-groove vertical quantum wells grown by low pressure organometallic chemical vapor deposition, Appl. Phys. Lett., Volume 69 (1996), p. 2710
[21] Carrier quantum confinement in self-ordered AlGaAs V-groove quantum wells, Phys. Rev. B, Volume 56 (1997), p. 7096
[22] Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces, Phys. Rev. Lett., Volume 81 (1998), p. 2962
[23] Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures, Phys. Rev. B, Volume 65 (2002), p. 205306
[24] The Physics of Powder Metallurgy (W.E. Kingston, ed.), McGraw-Hill, New York, 1951, p. 143
[25] Theory of epitaxial growth onto nonplanar substrates, J. Vac. Sci. Technol. A, Volume 10 (1992), p. 684
[26] Self-formation of semiconductor vertical quantum barriers by epitaxial growth on corrugated surfaces, Phys. Rev. B, Volume 61 (2000), p. 7223
[27] Wide terrace formation during metalorganic vapor phase epitaxy of GaAs, AlAs, and AlGaAs, Appl. Phys. Lett., Volume 65 (1994), p. 1418
[28] Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication, Appl. Phys. Lett., Volume 79 (2001), p. 409
[29] Surface relief grating induced colloidal crystal structures, Langmuir, Volume 18 (2002), p. 2019
[30] Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystals superlattices, Science, Volume 287 (2000) no. 5460, p. 1989
[31] Silicon nanopillars formed with gold colloidal particle masking, J. Vac. Sci. Technol. B, Volume 16 (1998) no. 6, p. 2938
[32] Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B, Volume 103 (1999), p. 3854
[33] Size-tunable Ge nano-particle arrays patterned on Si substrates with nanosphere lithography and thermal annealing, Jpn. J. Appl. Phys. Pt. 1, Volume 41 (2002) no. 7A, p. 4626
[34] Biomimetic nanostructure fabrication: nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports, Nano Lett., Volume 3 (2003), p. 315
[35] Nanostructuring surfaces by ion sputtering, J. Phys.: Condens. Matter., Volume 14 (2002), p. 8153
[36] Appl. Phys. Lett., 78 (2001), p. 3316
[37] Formation of ordered nanoscale semiconductor dots by ion sputtering, Science, Volume 285 (1999), p. 1551
[38] Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films, Phys. Rev. B, Volume 53 (1996), p. 16334
[39] Strain distribution control on the silicon wafer scale for advanced nanostructure fabrication, Appl. Phys. Lett., Volume 80 (2002), p. 1073
[40] Shape of atomic steps on Si(111) under localized stress, Phys. Rev. B, Volume 66 (2002), p. 085303
[41] Self-organization in growth of quantum dot superlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675
[42] Wafer-scale strain engineering on silicon for fabrication of ultimately controlled nanostructures, Phys. Rev. B, Volume 67 (2003), p. 115302
[43] Influences of the Si(113) anisotropy on Ge nanowire formation and related island shape transition, Surf. Sci., Volume 497 (2002), p. 93
[44] Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, Volume 394 (1998), p. 451
[45] Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy, Phys. Rev. Lett., Volume 88 (2002), p. 015507
[46] Dislocations in relaxed SiGe/Si heterostructures, Phys. Status Solidi A, Volume 171 (1999) no. 1, p. 227
[47] Accurate control of the misorientation angles in direct wafer bonding, Appl. Phys. Lett., Volume 80 (2002), p. 793
[48] GIXRD of nanoscale strain patterning in wafer bonding, Nucl. Instr. Meth. Phys. Res. B, Volume 200 (2003), p. 73
[49] Analyse du contraste d'un sous-joint de torsion (001) dans le silicium en MET à deux ondes, C. R. Physique, Volume 3 (2002), p. 657
[50] Lateral ordering of quantum dots by periodic subsurface stressors, Appl. Phys. Lett., Volume 74 (1999), p. 2280
[51] How to control the self-organization of nanoparticles by bonded thin layers, Surf. Sci., Volume 432 (1999), p. 37
[52] Fabrication of nanoperiodic surface structures by controlled etching of dislocations in bicrystals, Appl. Phys. Lett., Volume 78 (2001), p. 2205
[53] Controlled surface nanopatterning with buried dislocation arrays, Surf. Sci., Volume 545 (2003), p. 211
[54] Stress-dependent surface reactions and implications for a stress measurement technique, J. Appl. Phys., Volume 87 (2000), p. 1211
[55] P. Gentile, J. Eymery, F. Leroy, P. Perreau, J. Meziere, F. Fournel, Germanium growth on nanopatterned surface studied by STM, in: 14th International Conference on Crystal Growth, August 2004, J. Cryst. Growth, in press
[56] On lateral organization of quantum dots on a prepatterned substrate, NATO ARW Proceedings, Kluwers Academic, June 2003
[57] Influence of nanoscale substrate curvature on growth kinetics and morphology of surface nuclei, J. Appl. Phys., Volume 84 (1998), p. 6673
[58] J. Eymery, T. Schülli, P. Gentile, D. Buttard, F. Leroy, F. Fournel, Germanium quantum dot relaxation on nanopatterned Silicon surface, Appl. Phys. Lett., submitted for publication
[59] Step arrangement design and nanostructure self-organization on Si surfaces, Appl. Surf. Sci., Volume 117/118 (1997), p. 642
[60] Self-organization of nanostructures on Si wafers using surface structure control, Surf. Sci., Volume 386 (1997), p. 137
[61] STM observations of three-dimensional Ge islands on Si(111) surfaces with different step orientations and step-bunching conditions, Surf. Sci., Volume 562 (2004), p. 15
Cited by Sources:
Comments - Policy