Comptes Rendus
Nanometric artificial structuring of semiconductor surfaces for crystalline growth
[Structuration artificielle de surfaces de semi-conducteurs pour la croissance cristalline]
Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 105-116.

Le couplage de méthodes classiques d'auto-organisation avec des nanostructurations artificielles de surfaces s'est récemment avéré être une excellente technique dans les matériaux semi-conducteurs pour contrôler simultanément la taille, la densité et la position de nanostructures épitaxiées. Certains aspects physiques concernant l'ingénierie de la morphologie et de la contrainte élastique sont passés en revue dans cet article. L'accent est mis sur les effets de capillarité, d'anisotropie de la vitesse de croissance, de relaxation de contrainte et d'entropie de mélange pour les alliages. L'interaction entre ces différentes forces motrices est illustrée en premier par la croissance de composés de semi-conducteurs III–V sur des surfaces obtenues par lithographie, puis par la croissance de germanium sur des substrats implantés et sur des surfaces nanostructurées obtenues par attaque chimique de réseaux de dislocations enterrées.

The coupling of standard self-organization methods with surface artificial nanostructuring has recently emerged as a promising technique in semiconductor materials to control simultaneously the size distribution, the density and the position of epitaxial nanostructures. Some physical aspects of the morphology and elastic strain engineering are reviewed in this article. The emphasis is on the effects of capillarity, growth rate anisotropy, strain relaxation and entropy of mixing for alloys. The interplay among these driving forces is first illustrated by III–V compound semiconductor growth on lithographically patterned surfaces, then by germanium growth on implanted substrates and nanopatterned templates obtained by chemical etching of buried strain dislocation networks.

Publié le :
DOI : 10.1016/j.crhy.2004.11.006
Keywords: Surface nanopatterning, Self-assembling, Epitaxial growth, Strain and curvature engineering
Mot clés : Nanostructuration de surface, Auto-organisation, Croissance épitaxiale, Ingénierie de contrainte et de courbure
J. Eymery 1 ; G. Biasiol 2 ; E. Kapon 2 ; T. Ogino 3

1 Équipe mixte CEA-CNRS-UJF « Nanophysique et Semiconducteurs », CEA/DRFMC/SP2M, 17, rue des Martyrs, 38054 Grenoble cedex 9, France
2 Laboratory of Physics of Nanostructures, Institute of Quantum Electronics and Photonics, Swiss Federal Institute of Technology, Lausanne, CH-1015 Lausanne, Switzerland
3 Department of Electrical and Computer Engineering, Yokohama National University, Tokiwadai 79-5, Hodogayaku, 240-8601 Yokohama, Japan
@article{CRPHYS_2005__6_1_105_0,
     author = {J. Eymery and G. Biasiol and E. Kapon and T. Ogino},
     title = {Nanometric artificial structuring of semiconductor surfaces for crystalline growth},
     journal = {Comptes Rendus. Physique},
     pages = {105--116},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.006},
     language = {en},
}
TY  - JOUR
AU  - J. Eymery
AU  - G. Biasiol
AU  - E. Kapon
AU  - T. Ogino
TI  - Nanometric artificial structuring of semiconductor surfaces for crystalline growth
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 105
EP  - 116
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.006
LA  - en
ID  - CRPHYS_2005__6_1_105_0
ER  - 
%0 Journal Article
%A J. Eymery
%A G. Biasiol
%A E. Kapon
%A T. Ogino
%T Nanometric artificial structuring of semiconductor surfaces for crystalline growth
%J Comptes Rendus. Physique
%D 2005
%P 105-116
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.006
%G en
%F CRPHYS_2005__6_1_105_0
J. Eymery; G. Biasiol; E. Kapon; T. Ogino. Nanometric artificial structuring of semiconductor surfaces for crystalline growth. Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 105-116. doi : 10.1016/j.crhy.2004.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.006/

[1] L. Jay Guo New development of nanoimprint technology, J. Phys. D, Volume 37 (2004), p. R123

[2] J.A. Meyer; I.D. Baikie; E. Kopatzki; R.J. Behm Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci., Volume 365 (1996), p. L647

[3] P.M. Petroff; A.C. Gossard; W. Wiegmann Structure of AlAs–GaAs interfaces grown on (100) vicinal surfaces by molecular beam epitaxy, Appl. Phys. Lett., Volume 45 (1984), p. 620

[4] S.Y. Shiryaev; F. Jensen; J.L. Hansen; J.W. Petersen; A.N. Larsen Nanoscale structuring by misfit dislocations in Si1−xGex/Si epitaxial systems, Phys. Rev. Lett., Volume 78 (1997), p. 503

[5] J. Villain; A. Pimpinelli Physique de la Croissance Cristalline, Collection Aléa-Saclay, Eyrolles, 1995 (ISBN: 2-212-05800-4)

[6] W.W. Mullins Theory of thermal grooving, J. Appl. Phys., Volume 28 (1957), p. 333

[7] C. Herring Diffusional viscosity of a polycrystalline solid, J. Appl. Phys., Volume 21 (1950), p. 437

[8] B. Yang; F. Liu; M.G. Lagally Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004), p. 025502

[9] M. Borgstrom; V. Zela; W. Seifert Quadruples of Ge dots grown on patterned Si surfaces, J. Cryst. Growth, Volume 259 (2003), p. 262

[10] G. Jin; J.L. Liu; S.G. Thomas; Y.H. Luo; K.L. Wang Controlled arrangement of self-organized Ge islands on patterned Si (0 0 1) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752

[11] J.Y. Tsao Material Fundamentals of Molecular Beam Epitaxy, Academic Press, Boston, 1993

[12] H. Lee; J.A. Johnson; M.Y. He; J.S. Speck; P.M. Petroff Strain-engineered self-assembled semiconductor quantum dot lattices, Appl. Phys. Lett., Volume 78 (2001), p. 105

[13] B.D. Gerardot; G. Subramanian; S. Minvielle; H. Lee; J.A. Johnson; W.V. Schoenfeld; D. Pine; J.S. Speck; P.M. Petroff Self-assembling quantum dot lattices through nucleation site engineering, J. Cryst. Growth, Volume 236 (2002), p. 647

[14] E. Kapon; D.M. Hwang; R. Bhat Stimulated emission in semiconductor quantum wire heterostructures, Phys. Rev. Lett., Volume 63 (1989), p. 430

[15] G. Vermeire; I. Moerman; Z.Q. Yu; F. Vermaerke; P. Van Daele; P. Demeester Atmospheric and low-pressure metalorganic vapor-phase epitaxial-growth of vertical quantum-wells and quantum-well wires on submicron gratings, J. Electron. Mater., Volume 23 (1994), p. 121

[16] A. Gustafsson; F. Reinhardt; G. Biasiol; E. Kapon Low-pressure organometallic chemical vapour deposition of quantum wires on V-grooved substrates, Appl. Phys. Lett., Volume 67 (1995), p. 3673

[17] X.-L. Wang; M. Ogura; H. Matsuhata Flow rate modulation epitaxy of AlGaAs/GaAs quantum wires on nonplanar substrate, Appl. Phys. Lett., Volume 66 (1995), p. 1506

[18] S. Koshiba; H. Noge; H. Akiyama; T. Inoshita; Y. Nakamura; A. Shimizu; Y. Nagamune; M. Tsuchiya; H. Kano; H. Sakaki; K. Wada Formation of GaAs ridge quantum wire structures by molecular beam epitaxy on patterned substrates, Appl. Phys. Lett., Volume 64 (1994), p. 363

[19] A. Hartmann; L. Loubies; F. Reinhardt; E. Kapon Self-limiting growth of quantum dot heterostructures on nonplanar {111}B substrates, Appl. Phys. Lett., Volume 71 (1997), p. 1314

[20] G. Biasiol; F. Reinhardt; A. Gustafsson; E. Martinet; E. Kapon Structure and formation mechanisms of AlGaAs V-groove vertical quantum wells grown by low pressure organometallic chemical vapor deposition, Appl. Phys. Lett., Volume 69 (1996), p. 2710

[21] E. Martinet; A. Gustafsson; G. Biasiol; F. Reinhardt; E. Kapon; K. Leifer Carrier quantum confinement in self-ordered AlGaAs V-groove quantum wells, Phys. Rev. B, Volume 56 (1997), p. 7096

[22] G. Biasiol; E. Kapon Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces, Phys. Rev. Lett., Volume 81 (1998), p. 2962

[23] G. Biasiol; A. Gustafsson; K. Leifer; E. Kapon Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures, Phys. Rev. B, Volume 65 (2002), p. 205306

[24] C. Herring The Physics of Powder Metallurgy (W.E. Kingston, ed.), McGraw-Hill, New York, 1951, p. 143

[25] M. Ozdemir; A. Zangwill Theory of epitaxial growth onto nonplanar substrates, J. Vac. Sci. Technol. A, Volume 10 (1992), p. 684

[26] G. Biasiol; K. Leifer; E. Kapon Self-formation of semiconductor vertical quantum barriers by epitaxial growth on corrugated surfaces, Phys. Rev. B, Volume 61 (2000), p. 7223

[27] M. Shinohara; M. Tanimoto; H. Yokoyama; N. Inoue Wide terrace formation during metalorganic vapor phase epitaxy of GaAs, AlAs, and AlGaAs, Appl. Phys. Lett., Volume 65 (1994), p. 1418

[28] C.T. Black; K.W. Guarini; K.R. Milkove; S.M. Baker; T.P. Russel; M.T. Tuominen Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication, Appl. Phys. Lett., Volume 79 (2001), p. 409

[29] D.K. Yi; M.J. Kim; D.-Y. Kim Surface relief grating induced colloidal crystal structures, Langmuir, Volume 18 (2002), p. 2019

[30] S. Sun; C.B. Murray; D. Weller; L. Folks; A. Moser Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystals superlattices, Science, Volume 287 (2000) no. 5460, p. 1989

[31] P.A. Lewis; H. Ahmed; T. Sato Silicon nanopillars formed with gold colloidal particle masking, J. Vac. Sci. Technol. B, Volume 16 (1998) no. 6, p. 2938

[32] J.C. Hulteen; D.A. Treichel; M.T. Smith; M.L. Duval; T.R. Jensen; R.P.V. Duyne Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays, J. Phys. Chem. B, Volume 103 (1999), p. 3854

[33] N. Li; M. Zinke-Allmang Size-tunable Ge nano-particle arrays patterned on Si substrates with nanosphere lithography and thermal annealing, Jpn. J. Appl. Phys. Pt. 1, Volume 41 (2002) no. 7A, p. 4626

[34] E.S. Györvary; A. O'Riordan; A.J. Quinn; G. Redmond; D. Pum; U.B. Sleytr Biomimetic nanostructure fabrication: nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports, Nano Lett., Volume 3 (2003), p. 315

[35] U. Valbusa; C. Boragno; F. Buatier de Mongeot Nanostructuring surfaces by ion sputtering, J. Phys.: Condens. Matter., Volume 14 (2002), p. 8153

[36] R. Gago; L. Vázquez; R. Cuerno; M. Varela; C. Ballesteros; J.M. Albella Appl. Phys. Lett., 78 (2001), p. 3316

[37] S. Facsko; T. Dekorsy; C. Koerdt; C. Trappe; H. Kurz; A. Vogt; H.L. Hartnagel Formation of ordered nanoscale semiconductor dots by ion sputtering, Science, Volume 285 (1999), p. 1551

[38] C. Teichert; M.G. Lagally; L.J. Peticolas; J.C. Bean; J. Tersoff Stress-induced self-organization of nanoscale structures in SiGe/Si multilayer films, Phys. Rev. B, Volume 53 (1996), p. 16334

[39] H. Omi; D.J. Bottomley; T. Ogino Strain distribution control on the silicon wafer scale for advanced nanostructure fabrication, Appl. Phys. Lett., Volume 80 (2002), p. 1073

[40] H. Omi; D.J. Bottomley; Y. Homma; T. Ogino; S. Stoyanov; V. Tonchev Shape of atomic steps on Si(111) under localized stress, Phys. Rev. B, Volume 66 (2002), p. 085303

[41] J. Tersoff; C. Teichert; M.G. Lagally Self-organization in growth of quantum dot superlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675

[42] H. Omi; D.J. Bottomley; Y. Homma; T. Ogino Wafer-scale strain engineering on silicon for fabrication of ultimately controlled nanostructures, Phys. Rev. B, Volume 67 (2003), p. 115302

[43] Z. Zhang; K. Sumitomo; H. Omi; T. Ogino Influences of the Si(113) anisotropy on Ge nanowire formation and related island shape transition, Surf. Sci., Volume 497 (2002), p. 93

[44] H. Brune; M. Giovannini; K. Bromann; K. Kern Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, Volume 394 (1998), p. 451

[45] G. Springholz; K. Wiesauer Nanoscale dislocation patterning in PbTe/PbSe(001) lattice-mismatched heteroepitaxy, Phys. Rev. Lett., Volume 88 (2002), p. 015507

[46] E.A. Fitzgerald; M.T. Currie; S.B. Samavedam; T.A. Langdo; G. Taraschi; V. Yang; C.W. Leitz; M.T. Bulsara Dislocations in relaxed SiGe/Si heterostructures, Phys. Status Solidi A, Volume 171 (1999) no. 1, p. 227

[47] F. Fournel; H. Moriceau; B. Aspar; K. Rousseau; J. Eymery; J.-L. Rouviere; N. Magnea Accurate control of the misorientation angles in direct wafer bonding, Appl. Phys. Lett., Volume 80 (2002), p. 793

[48] J. Eymery; F. Leroy; F. Fournel GIXRD of nanoscale strain patterning in wafer bonding, Nucl. Instr. Meth. Phys. Res. B, Volume 200 (2003), p. 73

[49] R. Bonnet; K. Rousseau; F. Fournel Analyse du contraste d'un sous-joint de torsion (001) dans le silicium en MET à deux ondes, C. R. Physique, Volume 3 (2002), p. 657

[50] A.E. Romanov; P.M. Petroff; J.S. Speck Lateral ordering of quantum dots by periodic subsurface stressors, Appl. Phys. Lett., Volume 74 (1999), p. 2280

[51] A. Bourret How to control the self-organization of nanoparticles by bonded thin layers, Surf. Sci., Volume 432 (1999), p. 37

[52] R.A. Wind; M.J. Murtagh; F. Mei; Y. Wang; M.A. Hines; S.L. Sass Fabrication of nanoperiodic surface structures by controlled etching of dislocations in bicrystals, Appl. Phys. Lett., Volume 78 (2001), p. 2205

[53] F. Leroy; J. Eymery; P. Gentile; F. Fournel Controlled surface nanopatterning with buried dislocation arrays, Surf. Sci., Volume 545 (2003), p. 211

[54] H.H. Yu; Z. Suo Stress-dependent surface reactions and implications for a stress measurement technique, J. Appl. Phys., Volume 87 (2000), p. 1211

[55] P. Gentile, J. Eymery, F. Leroy, P. Perreau, J. Meziere, F. Fournel, Germanium growth on nanopatterned surface studied by STM, in: 14th International Conference on Crystal Growth, August 2004, J. Cryst. Growth, in press

[56] C. Priester On lateral organization of quantum dots on a prepatterned substrate, NATO ARW Proceedings, Kluwers Academic, June 2003

[57] O.A. Louchev; Y. Sato Influence of nanoscale substrate curvature on growth kinetics and morphology of surface nuclei, J. Appl. Phys., Volume 84 (1998), p. 6673

[58] J. Eymery, T. Schülli, P. Gentile, D. Buttard, F. Leroy, F. Fournel, Germanium quantum dot relaxation on nanopatterned Silicon surface, Appl. Phys. Lett., submitted for publication

[59] T. Ogino; H. Hibino; Y. Homma Step arrangement design and nanostructure self-organization on Si surfaces, Appl. Surf. Sci., Volume 117/118 (1997), p. 642

[60] T. Ogino Self-organization of nanostructures on Si wafers using surface structure control, Surf. Sci., Volume 386 (1997), p. 137

[61] F. Lin; K. Sumitomo; Y. Homma; T. Ogino STM observations of three-dimensional Ge islands on Si(111) surfaces with different step orientations and step-bunching conditions, Surf. Sci., Volume 562 (2004), p. 15

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Self-organized and self-catalyst growth of semiconductor and metal wires by vapour phase epitaxy: GaN rods versus Cu whiskers

Joël Eymery; Xiaojun Chen; Christophe Durand; ...

C. R. Phys (2013)


Role of patterning in islands nucleation on semiconductor surfaces

Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; ...

C. R. Phys (2006)


Formation and ordering of epitaxial quantum dots

Paola Atkinson; Oliver G. Schmidt; Stephen P. Bremner; ...

C. R. Phys (2008)