[Nucléation et croissance de nanostructures ordonnées sur des surfaces auto-organisées]
Depuis une dizaine d'années, la découverte des phénomènes d'auto-organisation à la surface des cristaux a suscité un engouement croissant. La force motrice de ce phénomène est une interaction élastique à longue portée due aux contraintes intrinsèques des surfaces. Ce phénomène « naturel » permet d'élaborer toute une gamme de substrats pré-structurés de 1 à 100 nm, qui servent ensuite de guide à la croissance des nanostructures. L'objectif premier de cette croissance organisée par rapport à la croissance aléatoire est la réalisation de nanostructures dont la dispersion en taille est étroite. Ceci ouvre la voie aux études des propriétés individuelles et collectives de ces nano-objets par des techniques macroscopiques faisant des moyennes sur un grand nombre d'objets (mesures optiques, électroniques ou magnétiques).
Self-ordering at crystal surfaces has been the subject of intense efforts during the last ten years, since it has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings in the 1–100 nm range. In this article we give an overview of the self-organized nanostructures growth on spontaneously nano-patterned templates. A great variety of surfaces exhibits a nano-scale order at thermal equilibrium, including adsorbate-induced reconstruction, surface dislocations networks, vicinal surfaces or more complex systems. Continuum models have been proposed where long-range elastic interactions are responsible for spontaneous periodic domain formation. Today the comparison between experiments such as Grazing Incidence X-Ray Diffraction experiments and calculations has lead to a great improvement of our fundamental understanding of the physics of self-ordering at crystal surfaces. Then, epitaxial growth on self-ordered surfaces leads to nanostructures organized growth. The present knowledge of modelization of such an heterogeneous growth using multi-scaled calculations is discussed. Such a high quality of both long-range and local ordered growth opens up the possibility of making measurements of physical properties of such nanostructures by macroscopic integration techniques.
Mots-clés : Surfaces métalliques, Auto-organisation, Croissance de nanostructures
Sylvie Rousset 1 ; Bernard Croset 2 ; Yann Girard 1 ; Geoffroy Prévot 2 ; Vincent Repain 1 ; Stanislas Rohart 1
@article{CRPHYS_2005__6_1_33_0, author = {Sylvie Rousset and Bernard Croset and Yann Girard and Geoffroy Pr\'evot and Vincent Repain and Stanislas Rohart}, title = {Self-organized epitaxial growth on spontaneously nano-patterned templates}, journal = {Comptes Rendus. Physique}, pages = {33--46}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.010}, language = {en}, }
TY - JOUR AU - Sylvie Rousset AU - Bernard Croset AU - Yann Girard AU - Geoffroy Prévot AU - Vincent Repain AU - Stanislas Rohart TI - Self-organized epitaxial growth on spontaneously nano-patterned templates JO - Comptes Rendus. Physique PY - 2005 SP - 33 EP - 46 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.010 LA - en ID - CRPHYS_2005__6_1_33_0 ER -
%0 Journal Article %A Sylvie Rousset %A Bernard Croset %A Yann Girard %A Geoffroy Prévot %A Vincent Repain %A Stanislas Rohart %T Self-organized epitaxial growth on spontaneously nano-patterned templates %J Comptes Rendus. Physique %D 2005 %P 33-46 %V 6 %N 1 %I Elsevier %R 10.1016/j.crhy.2004.11.010 %G en %F CRPHYS_2005__6_1_33_0
Sylvie Rousset; Bernard Croset; Yann Girard; Geoffroy Prévot; Vincent Repain; Stanislas Rohart. Self-organized epitaxial growth on spontaneously nano-patterned templates. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 33-46. doi : 10.1016/j.crhy.2004.11.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.010/
[1] Nucleation and growth of supported clusters at defect sites: Pd/MgO(001), Phys. Rev. B, Volume 61 (2000), p. 11105
[2] Growth of nanometer-size metallic particles on CaF2(111), J. Appl. Phys., Volume 80 (1996), p. 1161
[3] Self-organized growth of three-dimensional quantum dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734
[4] Self-organization in growth of quantum dot supperlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675
[5] Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett., Volume 75 (1995), p. 2542
[6] Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., Volume 66 (1991), p. 1721
[7] Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, Volume 394 (1998), p. 451
[8] Self-organized growth of nanosized vertical magnetic Co pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999), p. 2769
[9] Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432
[10] On the theory of plastic deformation and twinning, Zh. Eksp. Teor. Fiz., Volume 8 (1938), p. 1340
[11] One dimensional dislocations, Proc. R. Soc. London Ser. A, Volume 198 (1949), p. 205
[12] Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction, Phys. Rev. Lett., Volume 54 (1985), p. 2619
[13] Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy, Phys. Rev. B, Volume 39 (1989), p. 7988
[14] Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains and surface defects, Phys. Rev. B, Volume 42 (1990), p. 9307
[15] Double sine Gordon solitons: a model for misfit dislocations on the Au(111) reconstructed surface, Phys. Rev. Lett., Volume 58 (1987), p. 2762
[16] Molecular-dynamics study of the reconstructed Au(111) surface: low temperature, Phys. Rev. B, Volume 40 (1989), p. 9574
[17] Strain relaxation in hexagonally close-packed metal–metal interfaces, Phys. Rev. Lett., Volume 74 (1995), p. 754
[18] Structure and growth of strained Cu films on Ru(0001), Surf. Sci., Volume 447 (2000), p. L141-L146
[19] Near-surface buckling in strained metal overlayer systems, Phys. Rev. Lett., Volume 75 (1995), p. 4242
[20] Observation of an adlayer-driven substrate reconstruction in Cu–Pt(111), Phys. Rev. B, Volume 58 (1998), p. R10195
[21] Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf. Sci. Rep., Volume 31 (1998), p. 121
[22] Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{110}–
[23] STM observations of Cu(100) c
[24] Self-assembled domain patterns, Nature, Volume 412 (2001), p. 1975
[25] Interplay between atomic and mesoscopic order on gold vicinal surfaces, Phys. Rev. Lett., Volume 84 (2000), p. 5367
[26] Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth, J. Phys.: Condens. Matter., Volume 15 (2003), p. S3363-S3392
[27] Faceting kinetics of stepped Si(113) surfaces: a time-resolved X-ray scattering study, Phys. Rev. Lett., Volume 74 (1995), p. 5240
[28] Faceting kinetics of stepped Si(113) surfaces: dynamic scaling and nano-scale grooves, Surf. Sci., Volume 372 (1997), p. 37
[29] Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004), p. 157
[30] Theory of the equilibrium shape of crystals, Sov. Phys. JETP, Volume 54 (1981), p. 605
[31] Domain shapes and patterns: the phenomenology of modulated phases, Science, Volume 267 (1995), p. 476
[32] Stability of periodic domain structures in a two-dimensional dipolar model, Phys. Rev. B, Volume 52 (1995), p. 2177
[33] Phase segregation and work-function variations on metal surfaces: spontaneous formation of periodic domain structures, Surf. Sci., Volume 268 (1992), p. L300
[34] Elastic stress domains and the herringbone reconstruction on Au(111), Phys. Rev. Lett., Volume 69 (1992), p. 1564
[35] Elastic properties of crystal surfaces, Sov. Phys. JETP, Volume 52 (1980), p. 129
[36] The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rep., Volume 29 (1997), p. 193
[37] Measurements of the intrinsic stress in thin metal films, Vacuum, Volume 41 (1990), p. 1279
[38] Mechanical stresses in (sub)monolayer epitaxial films, Phys. Rev. Lett., Volume 64 (1990), p. 1039
[39] Measuring surface stress discontinuities in self-organized systems with X rays, Phys. Rev. Lett., Volume 88 (2002), p. 56103
[40] Surface relaxation and near-surface atomic displacements in the N/Cu(100) self-ordered system, Surf. Sci., Volume 490 (2001), p. 336
[41] Self-organisation of adsorbed nitrogen on (100) and (410) copper faces: a SPA-LEED study, Surf. Sci., Volume 461 (2000), p. 78
[42] Self-ordering in two dimensions: nitrogen adsorption on copper (100) followed by STM at elevated temperature, Surf. Sci., Volume 476 (2001), p. 95
[43] Elastic origin of the O/Cu(110) self-ordering evidenced by GIXD, Surf. Sci., Volume 549 (2004), p. 52
[44] Determination of the elastic dipole at the atomic steps of Pt(977) from surface X-ray diffraction, Phys. Rev. B, Volume 67 (2003), p. 245409
[45] GIXD measurement of the relaxations and elastic step interactions on Cu(211) and Cu(322), Phys. Rev. B, Volume 70 (2004), p. 205406
[46] G. Prévot, L. Barbier, G. Baudot, Y. Girard, V. Repain, S. Rohart, S. Rousset, unpublished
[47] Introduction to Surface and Thin Film Processes, Cambridge Univ. Press, Cambridge, 2000
[48] Measuring surface diffusion from nucleation island densities, Phys. Rev. B, Volume 60 (1999), p. 5991
[49] Selective nucleation and controlled growth: quantum dots on metal, insulator and semiconductor surfaces, Philos. Trans. R. Soc. London Ser. A, Volume 361 (2003), p. 311
[50] Nucleation growth and pattern formation in heteroepitaxy, Physica A, Volume 239 (1997), p. 35
[51] Atomistic mechanisms for the ordered growth of Co nanodots on Au(788): a comparison between VT-STM experiments and multiscale calculations, Surf. Sci., Volume 559 (2004), pp. 47-62
[52] S. Rohart, G. Baudot, V. Repain, Y. Girard, S. Rousset, Site selective nucleation on surfaces: the rate equation model compared with VT-STM experiment of Co on Au(788), Proceedings of ICCG-14, J. Cryst. Growth, in press
[53] Pre-structured metallic template for the growth of ordered, square-based nanodots, Surf. Sci., Volume 511 (2002), p. 183
[54] Epitaxy controlled by self-assembled nanometer-scale structures, Phys. Rev. B, Volume 56 (1997), p. 6458
[55] S. Ohno, K. Nakatsuji, F. Komori, Growth mechanism of Fe nanoisland array on Cu(100)–c
[56] Fabricating nanometer-scale Co dot and line arrays on Cu(100) surfaces, Appl. Phys. Lett., Volume 76 (2000), p. 1128
[57] Self-organized structure in Co thin film growth on c
[58] Growth and magnetism of Co nanometer-scale dots squarely arranged on Cu(001)–c
[59] Jpn. J. Appl. Phys., 37 (1998), p. L154
[60] Fabricating nanometer-scale Ag lines and islands on Cu(100) surfaces, Surf. Sci., Volume 440 (1999), p. L835
[61] Nanostructure fabrication on copper surfaces, Surf. Sci., Volume 514 (2002), pp. 33-40
[62] Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci., Volume 365 (1996), p. L647
[63] Epitaxial growth of Fe on Au(111): a scanning tunneling microscopy investigation, Surf. Sci., Volume 225 (1991), p. L529
[64] Microscopic aspects of the initial growth of metastable fcc iron on Au(111), J. Vac. Sci. Technol. A, Volume 10 (1992), p. 1981
[65] Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, Volume 44 (1991), p. 10354
[66] Burrowing self-organized cobalt clusters into a gold substrate, Europhys. Lett., Volume 45 (1999), p. 327
[67] Nucleation and growth of catalytically active Pd islands on Au(111)-22
[68] Growth of Rh on Au(111): surface intermixing of immiscible metals, Surf. Sci., Volume 304 (1994), p. L400
[69] Two-dimensional long-range ordered growth of uniform cobalt nanostructures on a Au(111) vicinal template, Europhys. Lett., Volume 58 (2002), p. 730
[70] Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), p. 1125
[71] Magnetic nanostructures, Adv. Phys., Volume 47 (1998), p. 511
[72] Magnetism in one dimension: Fe on Cu(111), Phys. Rev. B, Volume 56 (1997), p. 2340
[73] Co growth on Pt(997): from monatomic chains to monolayer completion, Surf. Sci., Volume 449 (2000), p. 93
[74] Ferromagnetism in one-dimensional monatomic metal chains, Nature, Volume 416 (2002), p. 301
[75] Giant magnetic anisotropy of single cobalt atoms and nanoparticules, Science, Volume 300 (2003), p. 1130
[76] Nanometals: formation and color, Materialstoday, Volume 7 (2004), p. 26
[77] Growth of self-organized cobalt nanostructures on Au(111) vicinal surfaces, Surf. Sci., Volume 447 (2000), p. L152
[78] Ordered growth of cobalt nanostructures on Au(111) vicinal surfaces: nucleation mechanism and temperature behavior, Mat. Sci. Engin. B, Volume 96 (2002), p. 178
[79] Temperature dependence of ordered cobalt nanodots growth on Au(788), Appl. Surf. Sci., Volume 212–213 (2003), p. 360
[80] Theoretical insight in the energetics of Co adsorption on a reconstructed Au(111) substrate, Phys. Rev. B, Volume 63 (2001), p. 235404
- Magnetic Properties of Nanosized Fe and FeCo Systems on Trenched Mo Templates, Coatings, Volume 12 (2022) no. 9, p. 1366 | DOI:10.3390/coatings12091366
- Self-Assembly of Nanoalloys, Nanoalloys (2020), p. 451 | DOI:10.1016/b978-0-12-819847-6.00018-8
- Application of uracil for the preparation of low-index nanostructured layers, Optical Materials Express, Volume 8 (2018) no. 8, p. 2182 | DOI:10.1364/ome.8.002182
- Site-specific colloidal crystal nucleation by template-enhanced particle transport, Proceedings of the National Academy of Sciences, Volume 113 (2016) no. 43, p. 12094 | DOI:10.1073/pnas.1608568113
- Ribbon-Like Nanopattern Formed on Nitrogen-Adsorbed Vicinal Cu(001), e-Journal of Surface Science and Nanotechnology, Volume 14 (2016) no. 0, p. 43 | DOI:10.1380/ejssnt.2016.43
- The Production of CNT Flower-Like Structures with 3-Fold and 4-Fold Symmetries on a Pt/Si Substrate, Advances in Chemical Engineering and Science, Volume 03 (2013) no. 01, p. 78 | DOI:10.4236/aces.2013.31009
- BACK MATTER, Introduction to Nanoscience and Nanomaterials (2013), p. 497 | DOI:10.1142/9789814397988_bmatter
- Epitaxial growth of self-ordered ZnO nanostructures on sapphire substrates by seed-assisted hydrothermal growth, Journal of Crystal Growth, Volume 362 (2013), p. 231 | DOI:10.1016/j.jcrysgro.2011.12.092
- Self-assembly of nanoalloys, Nanoalloys (2013), p. 373 | DOI:10.1016/b978-0-12-394401-6.00011-4
- Multilayer thin film growth on crystalline and quasicrystalline surfaces: A phase-field crystal study, Physical Review B, Volume 85 (2012) no. 24 | DOI:10.1103/physrevb.85.245428
- Spontaneous formation of size-selected bimetallic nanoparticle arrays, Surface Science, Volume 606 (2012) no. 1-2, p. 110 | DOI:10.1016/j.susc.2011.09.010
- Direct Measurement of Elastic Displacement Modes by Grazing Incidence X‐Ray Diffraction, Mechanical Stress on the Nanoscale (2011), p. 275 | DOI:10.1002/9783527639540.ch13
- Quasi unidimensional growth of Co nanostructures on a strained Au(111) surface, Surface Science, Volume 605 (2011) no. 13-14, p. 1165 | DOI:10.1016/j.susc.2011.03.019
- Plasma Surface Modification of PMMA for Optical Applications, Journal of Adhesion Science and Technology, Volume 24 (2010) no. 7, p. 1283 | DOI:10.1163/016942409x12561252292026
- Manipulated nucleation of Fe nanostructures on Au(111) with combined growth methods, Nanotechnology, Volume 21 (2010) no. 1, p. 015606 | DOI:10.1088/0957-4484/21/1/015606
- The Template Route to Nanostructured Model Catalysts, Scanning Tunneling Microscopy in Surface Science (2009), p. 29 | DOI:10.1002/9783527628827.ch2
- Two‐Dimensional Self‐Organization of an Ordered Au Silicide Nanowire Network on a Si(110)‐16 × 2 Surface, Small, Volume 5 (2009) no. 16, p. 1855 | DOI:10.1002/smll.200900286
- Surfaces: Two-Dimensional Templates, Templates in Chemistry III, Volume 287 (2008), p. 45 | DOI:10.1007/128_2008_151
- Dynamics of Self-Organized Epitaxial Island Formation under Controlled Annealing, IUTAM Symposium on Mechanical Behavior and Micro-Mechanics of Nanostructured Materials, Volume 144 (2007), p. 219 | DOI:10.1007/978-1-4020-5624-6_22
- Growth of Si nanostructures on Ag(001), Surface Science, Volume 601 (2007) no. 1, p. 262 | DOI:10.1016/j.susc.2006.09.030
- Ordered growth of nanodots on a pre-structured metallic template: Au/N/Cu(001), Surface Science, Volume 601 (2007) no. 9, p. 2017 | DOI:10.1016/j.susc.2007.02.033
- Self-organization on surfaces: foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 1, p. 3 | DOI:10.1016/j.crhy.2004.11.009
Cité par 22 documents. Sources : Crossref
Commentaires - Politique