Self-ordering at crystal surfaces has been the subject of intense efforts during the last ten years, since it has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings in the 1–100 nm range. In this article we give an overview of the self-organized nanostructures growth on spontaneously nano-patterned templates. A great variety of surfaces exhibits a nano-scale order at thermal equilibrium, including adsorbate-induced reconstruction, surface dislocations networks, vicinal surfaces or more complex systems. Continuum models have been proposed where long-range elastic interactions are responsible for spontaneous periodic domain formation. Today the comparison between experiments such as Grazing Incidence X-Ray Diffraction experiments and calculations has lead to a great improvement of our fundamental understanding of the physics of self-ordering at crystal surfaces. Then, epitaxial growth on self-ordered surfaces leads to nanostructures organized growth. The present knowledge of modelization of such an heterogeneous growth using multi-scaled calculations is discussed. Such a high quality of both long-range and local ordered growth opens up the possibility of making measurements of physical properties of such nanostructures by macroscopic integration techniques.
Depuis une dizaine d'années, la découverte des phénomènes d'auto-organisation à la surface des cristaux a suscité un engouement croissant. La force motrice de ce phénomène est une interaction élastique à longue portée due aux contraintes intrinsèques des surfaces. Ce phénomène « naturel » permet d'élaborer toute une gamme de substrats pré-structurés de 1 à 100 nm, qui servent ensuite de guide à la croissance des nanostructures. L'objectif premier de cette croissance organisée par rapport à la croissance aléatoire est la réalisation de nanostructures dont la dispersion en taille est étroite. Ceci ouvre la voie aux études des propriétés individuelles et collectives de ces nano-objets par des techniques macroscopiques faisant des moyennes sur un grand nombre d'objets (mesures optiques, électroniques ou magnétiques).
Mots-clés : Surfaces métalliques, Auto-organisation, Croissance de nanostructures
Sylvie Rousset 1; Bernard Croset 2; Yann Girard 1; Geoffroy Prévot 2; Vincent Repain 1; Stanislas Rohart 1
@article{CRPHYS_2005__6_1_33_0, author = {Sylvie Rousset and Bernard Croset and Yann Girard and Geoffroy Pr\'evot and Vincent Repain and Stanislas Rohart}, title = {Self-organized epitaxial growth on spontaneously nano-patterned templates}, journal = {Comptes Rendus. Physique}, pages = {33--46}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.010}, language = {en}, }
TY - JOUR AU - Sylvie Rousset AU - Bernard Croset AU - Yann Girard AU - Geoffroy Prévot AU - Vincent Repain AU - Stanislas Rohart TI - Self-organized epitaxial growth on spontaneously nano-patterned templates JO - Comptes Rendus. Physique PY - 2005 SP - 33 EP - 46 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.010 LA - en ID - CRPHYS_2005__6_1_33_0 ER -
%0 Journal Article %A Sylvie Rousset %A Bernard Croset %A Yann Girard %A Geoffroy Prévot %A Vincent Repain %A Stanislas Rohart %T Self-organized epitaxial growth on spontaneously nano-patterned templates %J Comptes Rendus. Physique %D 2005 %P 33-46 %V 6 %N 1 %I Elsevier %R 10.1016/j.crhy.2004.11.010 %G en %F CRPHYS_2005__6_1_33_0
Sylvie Rousset; Bernard Croset; Yann Girard; Geoffroy Prévot; Vincent Repain; Stanislas Rohart. Self-organized epitaxial growth on spontaneously nano-patterned templates. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 33-46. doi : 10.1016/j.crhy.2004.11.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.010/
[1] Nucleation and growth of supported clusters at defect sites: Pd/MgO(001), Phys. Rev. B, Volume 61 (2000), p. 11105
[2] Growth of nanometer-size metallic particles on CaF2(111), J. Appl. Phys., Volume 80 (1996), p. 1161
[3] Self-organized growth of three-dimensional quantum dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734
[4] Self-organization in growth of quantum dot supperlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675
[5] Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett., Volume 75 (1995), p. 2542
[6] Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., Volume 66 (1991), p. 1721
[7] Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, Volume 394 (1998), p. 451
[8] Self-organized growth of nanosized vertical magnetic Co pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999), p. 2769
[9] Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432
[10] On the theory of plastic deformation and twinning, Zh. Eksp. Teor. Fiz., Volume 8 (1938), p. 1340
[11] One dimensional dislocations, Proc. R. Soc. London Ser. A, Volume 198 (1949), p. 205
[12] Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction, Phys. Rev. Lett., Volume 54 (1985), p. 2619
[13] Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy, Phys. Rev. B, Volume 39 (1989), p. 7988
[14] Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains and surface defects, Phys. Rev. B, Volume 42 (1990), p. 9307
[15] Double sine Gordon solitons: a model for misfit dislocations on the Au(111) reconstructed surface, Phys. Rev. Lett., Volume 58 (1987), p. 2762
[16] Molecular-dynamics study of the reconstructed Au(111) surface: low temperature, Phys. Rev. B, Volume 40 (1989), p. 9574
[17] Strain relaxation in hexagonally close-packed metal–metal interfaces, Phys. Rev. Lett., Volume 74 (1995), p. 754
[18] Structure and growth of strained Cu films on Ru(0001), Surf. Sci., Volume 447 (2000), p. L141-L146
[19] Near-surface buckling in strained metal overlayer systems, Phys. Rev. Lett., Volume 75 (1995), p. 4242
[20] Observation of an adlayer-driven substrate reconstruction in Cu–Pt(111), Phys. Rev. B, Volume 58 (1998), p. R10195
[21] Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf. Sci. Rep., Volume 31 (1998), p. 121
[22] Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{110}–O, Phys. Rev. Lett., Volume 67 (1991), p. 855
[23] STM observations of Cu(100) cN surfaces: evidence for attractive interactions and an incommensurate c structure, Surf. Sci., Volume 317 (1994), p. 309
[24] Self-assembled domain patterns, Nature, Volume 412 (2001), p. 1975
[25] Interplay between atomic and mesoscopic order on gold vicinal surfaces, Phys. Rev. Lett., Volume 84 (2000), p. 5367
[26] Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth, J. Phys.: Condens. Matter., Volume 15 (2003), p. S3363-S3392
[27] Faceting kinetics of stepped Si(113) surfaces: a time-resolved X-ray scattering study, Phys. Rev. Lett., Volume 74 (1995), p. 5240
[28] Faceting kinetics of stepped Si(113) surfaces: dynamic scaling and nano-scale grooves, Surf. Sci., Volume 372 (1997), p. 37
[29] Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004), p. 157
[30] Theory of the equilibrium shape of crystals, Sov. Phys. JETP, Volume 54 (1981), p. 605
[31] Domain shapes and patterns: the phenomenology of modulated phases, Science, Volume 267 (1995), p. 476
[32] Stability of periodic domain structures in a two-dimensional dipolar model, Phys. Rev. B, Volume 52 (1995), p. 2177
[33] Phase segregation and work-function variations on metal surfaces: spontaneous formation of periodic domain structures, Surf. Sci., Volume 268 (1992), p. L300
[34] Elastic stress domains and the herringbone reconstruction on Au(111), Phys. Rev. Lett., Volume 69 (1992), p. 1564
[35] Elastic properties of crystal surfaces, Sov. Phys. JETP, Volume 52 (1980), p. 129
[36] The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rep., Volume 29 (1997), p. 193
[37] Measurements of the intrinsic stress in thin metal films, Vacuum, Volume 41 (1990), p. 1279
[38] Mechanical stresses in (sub)monolayer epitaxial films, Phys. Rev. Lett., Volume 64 (1990), p. 1039
[39] Measuring surface stress discontinuities in self-organized systems with X rays, Phys. Rev. Lett., Volume 88 (2002), p. 56103
[40] Surface relaxation and near-surface atomic displacements in the N/Cu(100) self-ordered system, Surf. Sci., Volume 490 (2001), p. 336
[41] Self-organisation of adsorbed nitrogen on (100) and (410) copper faces: a SPA-LEED study, Surf. Sci., Volume 461 (2000), p. 78
[42] Self-ordering in two dimensions: nitrogen adsorption on copper (100) followed by STM at elevated temperature, Surf. Sci., Volume 476 (2001), p. 95
[43] Elastic origin of the O/Cu(110) self-ordering evidenced by GIXD, Surf. Sci., Volume 549 (2004), p. 52
[44] Determination of the elastic dipole at the atomic steps of Pt(977) from surface X-ray diffraction, Phys. Rev. B, Volume 67 (2003), p. 245409
[45] GIXD measurement of the relaxations and elastic step interactions on Cu(211) and Cu(322), Phys. Rev. B, Volume 70 (2004), p. 205406
[46] G. Prévot, L. Barbier, G. Baudot, Y. Girard, V. Repain, S. Rohart, S. Rousset, unpublished
[47] Introduction to Surface and Thin Film Processes, Cambridge Univ. Press, Cambridge, 2000
[48] Measuring surface diffusion from nucleation island densities, Phys. Rev. B, Volume 60 (1999), p. 5991
[49] Selective nucleation and controlled growth: quantum dots on metal, insulator and semiconductor surfaces, Philos. Trans. R. Soc. London Ser. A, Volume 361 (2003), p. 311
[50] Nucleation growth and pattern formation in heteroepitaxy, Physica A, Volume 239 (1997), p. 35
[51] Atomistic mechanisms for the ordered growth of Co nanodots on Au(788): a comparison between VT-STM experiments and multiscale calculations, Surf. Sci., Volume 559 (2004), pp. 47-62
[52] S. Rohart, G. Baudot, V. Repain, Y. Girard, S. Rousset, Site selective nucleation on surfaces: the rate equation model compared with VT-STM experiment of Co on Au(788), Proceedings of ICCG-14, J. Cryst. Growth, in press
[53] Pre-structured metallic template for the growth of ordered, square-based nanodots, Surf. Sci., Volume 511 (2002), p. 183
[54] Epitaxy controlled by self-assembled nanometer-scale structures, Phys. Rev. B, Volume 56 (1997), p. 6458
[55] S. Ohno, K. Nakatsuji, F. Komori, Growth mechanism of Fe nanoisland array on Cu(100)–cN surfaces, Surf. Sci
[56] Fabricating nanometer-scale Co dot and line arrays on Cu(100) surfaces, Appl. Phys. Lett., Volume 76 (2000), p. 1128
[57] Self-organized structure in Co thin film growth on c–N–Cu(100) surfaces, Surf. Sci., Volume 450 (2000), p. 44
[58] Growth and magnetism of Co nanometer-scale dots squarely arranged on Cu(001)–cN surface, Phys. Rev. B, Volume 63 (2001), p. 214420
[59] Jpn. J. Appl. Phys., 37 (1998), p. L154
[60] Fabricating nanometer-scale Ag lines and islands on Cu(100) surfaces, Surf. Sci., Volume 440 (1999), p. L835
[61] Nanostructure fabrication on copper surfaces, Surf. Sci., Volume 514 (2002), pp. 33-40
[62] Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci., Volume 365 (1996), p. L647
[63] Epitaxial growth of Fe on Au(111): a scanning tunneling microscopy investigation, Surf. Sci., Volume 225 (1991), p. L529
[64] Microscopic aspects of the initial growth of metastable fcc iron on Au(111), J. Vac. Sci. Technol. A, Volume 10 (1992), p. 1981
[65] Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, Volume 44 (1991), p. 10354
[66] Burrowing self-organized cobalt clusters into a gold substrate, Europhys. Lett., Volume 45 (1999), p. 327
[67] Nucleation and growth of catalytically active Pd islands on Au(111)-22 studied by scanning tunneling microscopy, Surf. Sci., Volume 398 (1998), p. 172
[68] Growth of Rh on Au(111): surface intermixing of immiscible metals, Surf. Sci., Volume 304 (1994), p. L400
[69] Two-dimensional long-range ordered growth of uniform cobalt nanostructures on a Au(111) vicinal template, Europhys. Lett., Volume 58 (2002), p. 730
[70] Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), p. 1125
[71] Magnetic nanostructures, Adv. Phys., Volume 47 (1998), p. 511
[72] Magnetism in one dimension: Fe on Cu(111), Phys. Rev. B, Volume 56 (1997), p. 2340
[73] Co growth on Pt(997): from monatomic chains to monolayer completion, Surf. Sci., Volume 449 (2000), p. 93
[74] Ferromagnetism in one-dimensional monatomic metal chains, Nature, Volume 416 (2002), p. 301
[75] Giant magnetic anisotropy of single cobalt atoms and nanoparticules, Science, Volume 300 (2003), p. 1130
[76] Nanometals: formation and color, Materialstoday, Volume 7 (2004), p. 26
[77] Growth of self-organized cobalt nanostructures on Au(111) vicinal surfaces, Surf. Sci., Volume 447 (2000), p. L152
[78] Ordered growth of cobalt nanostructures on Au(111) vicinal surfaces: nucleation mechanism and temperature behavior, Mat. Sci. Engin. B, Volume 96 (2002), p. 178
[79] Temperature dependence of ordered cobalt nanodots growth on Au(788), Appl. Surf. Sci., Volume 212–213 (2003), p. 360
[80] Theoretical insight in the energetics of Co adsorption on a reconstructed Au(111) substrate, Phys. Rev. B, Volume 63 (2001), p. 235404
Cited by Sources:
Comments - Policy