Comptes Rendus
Self-organized epitaxial growth on spontaneously nano-patterned templates
[Nucléation et croissance de nanostructures ordonnées sur des surfaces auto-organisées]
Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 33-46.

Depuis une dizaine d'années, la découverte des phénomènes d'auto-organisation à la surface des cristaux a suscité un engouement croissant. La force motrice de ce phénomène est une interaction élastique à longue portée due aux contraintes intrinsèques des surfaces. Ce phénomène « naturel » permet d'élaborer toute une gamme de substrats pré-structurés de 1 à 100 nm, qui servent ensuite de guide à la croissance des nanostructures. L'objectif premier de cette croissance organisée par rapport à la croissance aléatoire est la réalisation de nanostructures dont la dispersion en taille est étroite. Ceci ouvre la voie aux études des propriétés individuelles et collectives de ces nano-objets par des techniques macroscopiques faisant des moyennes sur un grand nombre d'objets (mesures optiques, électroniques ou magnétiques).

Self-ordering at crystal surfaces has been the subject of intense efforts during the last ten years, since it has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings in the 1–100 nm range. In this article we give an overview of the self-organized nanostructures growth on spontaneously nano-patterned templates. A great variety of surfaces exhibits a nano-scale order at thermal equilibrium, including adsorbate-induced reconstruction, surface dislocations networks, vicinal surfaces or more complex systems. Continuum models have been proposed where long-range elastic interactions are responsible for spontaneous periodic domain formation. Today the comparison between experiments such as Grazing Incidence X-Ray Diffraction experiments and calculations has lead to a great improvement of our fundamental understanding of the physics of self-ordering at crystal surfaces. Then, epitaxial growth on self-ordered surfaces leads to nanostructures organized growth. The present knowledge of modelization of such an heterogeneous growth using multi-scaled calculations is discussed. Such a high quality of both long-range and local ordered growth opens up the possibility of making measurements of physical properties of such nanostructures by macroscopic integration techniques.

Publié le :
DOI : 10.1016/j.crhy.2004.11.010
Keywords: Metal surfaces, Self-ordering, Nanostructures growth
Mot clés : Surfaces métalliques, Auto-organisation, Croissance de nanostructures
Sylvie Rousset 1 ; Bernard Croset 2 ; Yann Girard 1 ; Geoffroy Prévot 2 ; Vincent Repain 1 ; Stanislas Rohart 1

1 Matériaux et phénoménes quantiques, université Paris 7, CNRS, case 7021, 2, place Jussieu, 75005 Paris, France
2 Groupe de physique des solides, universités Paris 6 et Paris 7, CNRS, campus de Boucicaut, 140, rue de Lourmel, 75015 Paris, France
@article{CRPHYS_2005__6_1_33_0,
     author = {Sylvie Rousset and Bernard Croset and Yann Girard and Geoffroy Pr\'evot and Vincent Repain and Stanislas Rohart},
     title = {Self-organized epitaxial growth on spontaneously nano-patterned templates},
     journal = {Comptes Rendus. Physique},
     pages = {33--46},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.010},
     language = {en},
}
TY  - JOUR
AU  - Sylvie Rousset
AU  - Bernard Croset
AU  - Yann Girard
AU  - Geoffroy Prévot
AU  - Vincent Repain
AU  - Stanislas Rohart
TI  - Self-organized epitaxial growth on spontaneously nano-patterned templates
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 33
EP  - 46
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.010
LA  - en
ID  - CRPHYS_2005__6_1_33_0
ER  - 
%0 Journal Article
%A Sylvie Rousset
%A Bernard Croset
%A Yann Girard
%A Geoffroy Prévot
%A Vincent Repain
%A Stanislas Rohart
%T Self-organized epitaxial growth on spontaneously nano-patterned templates
%J Comptes Rendus. Physique
%D 2005
%P 33-46
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.010
%G en
%F CRPHYS_2005__6_1_33_0
Sylvie Rousset; Bernard Croset; Yann Girard; Geoffroy Prévot; Vincent Repain; Stanislas Rohart. Self-organized epitaxial growth on spontaneously nano-patterned templates. Comptes Rendus. Physique, Volume 6 (2005) no. 1, pp. 33-46. doi : 10.1016/j.crhy.2004.11.010. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.010/

[1] G. Haas; A. Menck; H. Brune; J. Barth; J. Venables; K. Kern Nucleation and growth of supported clusters at defect sites: Pd/MgO(001), Phys. Rev. B, Volume 61 (2000), p. 11105

[2] K. Heim; S. Coyle; G. Hembree; J. Venables Growth of nanometer-size metallic particles on CaF2(111), J. Appl. Phys., Volume 80 (1996), p. 1161

[3] G. Springholz; V. Holy; M. Pinczolits; G. Bauer Self-organized growth of three-dimensional quantum dot crystals with fcc-like stacking and a tunable lattice constant, Science, Volume 282 (1998), p. 734

[4] J. Tersoff; C. Teichert; M. Lagally Self-organization in growth of quantum dot supperlattices, Phys. Rev. Lett., Volume 76 (1996), p. 1675

[5] Q. Xie; A. Madhukar; P. Chen; N. Kobayashi Vertically self-organized InAs quantum box islands on GaAs(100), Phys. Rev. Lett., Volume 75 (1995), p. 2542

[6] D. Chambliss; R. Wilson; S. Chiang Nucleation of ordered Ni island arrays on Au(111) by surface-lattice dislocations, Phys. Rev. Lett., Volume 66 (1991), p. 1721

[7] H. Brune; M. Giovannini; K. Bromann; K. Kern Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, Volume 394 (1998), p. 451

[8] O. Fruchart; M. Klaua; J. Barthel; J. Kirschner Self-organized growth of nanosized vertical magnetic Co pillars on Au(111), Phys. Rev. Lett., Volume 83 (1999), p. 2769

[9] C. Teichert Self-organization of nanostructures in semiconductor heteroepitaxy, Phys. Rep., Volume 365 (2002), pp. 335-432

[10] Y. Frenkel; T. Kontorova On the theory of plastic deformation and twinning, Zh. Eksp. Teor. Fiz., Volume 8 (1938), p. 1340

[11] F. Frank; J. Van der Merwe One dimensional dislocations, Proc. R. Soc. London Ser. A, Volume 198 (1949), p. 205

[12] U. Harten; A. Lahee; J. Toennis; C. Wöll Observation of a soliton reconstruction of Au(111) by high-resolution helium-atom diffraction, Phys. Rev. Lett., Volume 54 (1985), p. 2619

[13] C. Wöll; S. Chiang; R. Wilson; P. Lippel Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy, Phys. Rev. B, Volume 39 (1989), p. 7988

[14] J. Barth; H. Brune; G. Ertl; R. Behm Scanning tunneling microscopy observations on the reconstructed Au(111) surface: atomic structure, long-range superstructure, rotational domains and surface defects, Phys. Rev. B, Volume 42 (1990), p. 9307

[15] M. El-Batanouny; S. Burdick; K. Martini; P. Stancioff Double sine Gordon solitons: a model for misfit dislocations on the Au(111) reconstructed surface, Phys. Rev. Lett., Volume 58 (1987), p. 2762

[16] R. Ravelo; M. El-Batanouny Molecular-dynamics study of the reconstructed Au(111) surface: low temperature, Phys. Rev. B, Volume 40 (1989), p. 9574

[17] C. Günther; J. Vrijmoeth; R. Hwang; R. Behm Strain relaxation in hexagonally close-packed metal–metal interfaces, Phys. Rev. Lett., Volume 74 (1995), p. 754

[18] H. Zajonz; D. Gibbs; A. Baddorf; V. Jahns; D. Zehner Structure and growth of strained Cu films on Ru(0001), Surf. Sci., Volume 447 (2000), p. L141-L146

[19] R. Hwang; J. Hamilton; J. Stevens; S. Foiles Near-surface buckling in strained metal overlayer systems, Phys. Rev. Lett., Volume 75 (1995), p. 4242

[20] B. Holst; M. Nohlen; K. Wandelt; W. Allison Observation of an adlayer-driven substrate reconstruction in Cu–Pt(111), Phys. Rev. B, Volume 58 (1998), p. R10195

[21] H. Brune Microscopic view of epitaxial metal growth: nucleation and aggregation, Surf. Sci. Rep., Volume 31 (1998), p. 121

[22] K. Kern; H. Niehus; A. Schatz; P. Zeppenfeld; J. Goerge; G. Comsa Long-range spatial self-organization in the adsorbate-induced restructuring of surfaces: Cu{110}–(2×1)O, Phys. Rev. Lett., Volume 67 (1991), p. 855

[23] F. Leibsle; S.S. Dhesi; S. Barrett; A. Robinson STM observations of Cu(100) c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2×2) structure, Surf. Sci., Volume 317 (1994), p. 309

[24] R. Plass; J. Last; N. Bartelt; G. Kellogg Self-assembled domain patterns, Nature, Volume 412 (2001), p. 1975

[25] V. Repain; J. Berroir; B. Croset; S. Rousset; Y. Garreau; V. Etgens; J. Lecoeur Interplay between atomic and mesoscopic order on gold vicinal surfaces, Phys. Rev. Lett., Volume 84 (2000), p. 5367

[26] S. Rousset; V. Repain; G. Baudot; Y. Garreau; J. Lecoeur Self-ordering of Au(111) vicinal surfaces and application to nanostructure organized growth, J. Phys.: Condens. Matter., Volume 15 (2003), p. S3363-S3392

[27] S. Song; S. Mochrie; G. Stephenson Faceting kinetics of stepped Si(113) surfaces: a time-resolved X-ray scattering study, Phys. Rev. Lett., Volume 74 (1995), p. 5240

[28] S. Song; M. Yoon; S. Mochrie; G. Stephenson; S. Milner Faceting kinetics of stepped Si(113) surfaces: dynamic scaling and nano-scale grooves, Surf. Sci., Volume 372 (1997), p. 37

[29] P. Müller; A. Saúl Elastic effects on surface physics, Surf. Sci. Rep., Volume 54 (2004), p. 157

[30] V. Marchenko Theory of the equilibrium shape of crystals, Sov. Phys. JETP, Volume 54 (1981), p. 605

[31] M. Seul; D. Andelman Domain shapes and patterns: the phenomenology of modulated phases, Science, Volume 267 (1995), p. 476

[32] K. Ng; D. Vanderbilt Stability of periodic domain structures in a two-dimensional dipolar model, Phys. Rev. B, Volume 52 (1995), p. 2177

[33] D. Vanderbilt Phase segregation and work-function variations on metal surfaces: spontaneous formation of periodic domain structures, Surf. Sci., Volume 268 (1992), p. L300

[34] S. Narasimhan; D. Vanderbilt Elastic stress domains and the herringbone reconstruction on Au(111), Phys. Rev. Lett., Volume 69 (1992), p. 1564

[35] V. Marchenko; A. Parshin Elastic properties of crystal surfaces, Sov. Phys. JETP, Volume 52 (1980), p. 129

[36] H. Ibach The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures, Surf. Sci. Rep., Volume 29 (1997), p. 193

[37] R. Abermann Measurements of the intrinsic stress in thin metal films, Vacuum, Volume 41 (1990), p. 1279

[38] A. Schell-Sorokin; R. Tromp Mechanical stresses in (sub)monolayer epitaxial films, Phys. Rev. Lett., Volume 64 (1990), p. 1039

[39] B. Croset; Y. Girard; G. Prévot; M. Sotto; Y. Garreau; R. Pinchaux; M. Sauvage-Simkin Measuring surface stress discontinuities in self-organized systems with X rays, Phys. Rev. Lett., Volume 88 (2002), p. 56103

[40] C. Cohen; H. Ellmer; J. Guigner; A. L'Hoir; G. Prévot; D. Schmaus; M. Sotto Surface relaxation and near-surface atomic displacements in the N/Cu(100) self-ordered system, Surf. Sci., Volume 490 (2001), p. 336

[41] M. Sotto; B. Croset Self-organisation of adsorbed nitrogen on (100) and (410) copper faces: a SPA-LEED study, Surf. Sci., Volume 461 (2000), p. 78

[42] H. Ellmer; V. Repain; S. Rousset; B. Croset; M. Sotto; P. Zeppenfeld Self-ordering in two dimensions: nitrogen adsorption on copper (100) followed by STM at elevated temperature, Surf. Sci., Volume 476 (2001), p. 95

[43] G. Prévot; B. Croset; Y. Girard; A. Coati; Y. Garreau; M. Hohage; L.D. Sun; P. Zeppenfeld Elastic origin of the O/Cu(110) self-ordering evidenced by GIXD, Surf. Sci., Volume 549 (2004), p. 52

[44] G. Prévot; P. Steadman; S. Ferrer Determination of the elastic dipole at the atomic steps of Pt(977) from surface X-ray diffraction, Phys. Rev. B, Volume 67 (2003), p. 245409

[45] G. Prévot; A. Coati; Y. Garreau GIXD measurement of the relaxations and elastic step interactions on Cu(211) and Cu(322), Phys. Rev. B, Volume 70 (2004), p. 205406

[46] G. Prévot, L. Barbier, G. Baudot, Y. Girard, V. Repain, S. Rohart, S. Rousset, unpublished

[47] J. Venables Introduction to Surface and Thin Film Processes, Cambridge Univ. Press, Cambridge, 2000

[48] H. Brune; G. Bales; J. Jacobsen; C. Boragno; K. Kern Measuring surface diffusion from nucleation island densities, Phys. Rev. B, Volume 60 (1999), p. 5991

[49] J. Venables; P. Bennett; H. Brune; J. Drucker; J.H. Harding Selective nucleation and controlled growth: quantum dots on metal, insulator and semiconductor surfaces, Philos. Trans. R. Soc. London Ser. A, Volume 361 (2003), p. 311

[50] J. Venables Nucleation growth and pattern formation in heteroepitaxy, Physica A, Volume 239 (1997), p. 35

[51] S. Rohart; G. Baudot; V. Repain; Y. Girard; S. Rousset; H. Bulou; C. Goyhenex; L. Proville Atomistic mechanisms for the ordered growth of Co nanodots on Au(788): a comparison between VT-STM experiments and multiscale calculations, Surf. Sci., Volume 559 (2004), pp. 47-62

[52] S. Rohart, G. Baudot, V. Repain, Y. Girard, S. Rousset, Site selective nucleation on surfaces: the rate equation model compared with VT-STM experiment of Co on Au(788), Proceedings of ICCG-14, J. Cryst. Growth, in press

[53] H. Ellmer; V. Repain; M. Sotto; S. Rousset Pre-structured metallic template for the growth of ordered, square-based nanodots, Surf. Sci., Volume 511 (2002), p. 183

[54] T. Parker; L. Wilson; N. Condon; F. Leibsle Epitaxy controlled by self-assembled nanometer-scale structures, Phys. Rev. B, Volume 56 (1997), p. 6458

[55] S. Ohno, K. Nakatsuji, F. Komori, Growth mechanism of Fe nanoisland array on Cu(100)–c(2×2)N surfaces, Surf. Sci

[56] S. Silva; S. Jenkins; S. York; F. Leibsle Fabricating nanometer-scale Co dot and line arrays on Cu(100) surfaces, Appl. Phys. Lett., Volume 76 (2000), p. 1128

[57] K. Mukai; Y. Matsumoto; K. Tanaka; F. Komori Self-organized structure in Co thin film growth on c(2×2)–N–Cu(100) surfaces, Surf. Sci., Volume 450 (2000), p. 44

[58] F. Komori; K. Lee; K. Nakatsuji; T. Iimori; Y. Cai Growth and magnetism of Co nanometer-scale dots squarely arranged on Cu(001)–c(2×2)N surface, Phys. Rev. B, Volume 63 (2001), p. 214420

[59] Y. Matsumoto; K. Tanaka Jpn. J. Appl. Phys., 37 (1998), p. L154

[60] S. Silva; F. Leibsle Fabricating nanometer-scale Ag lines and islands on Cu(100) surfaces, Surf. Sci., Volume 440 (1999), p. L835

[61] F. Leibsle Nanostructure fabrication on copper surfaces, Surf. Sci., Volume 514 (2002), pp. 33-40

[62] J. Meyer; I. Baikie; E. Kopatzki; R. Behm Preferential island nucleation at the elbows of the Au(111) herringbone reconstruction through place exchange, Surf. Sci., Volume 365 (1996), p. L647

[63] B. Voigtländer; G. Meyer; N. Amer Epitaxial growth of Fe on Au(111): a scanning tunneling microscopy investigation, Surf. Sci., Volume 225 (1991), p. L529

[64] J. Stroscio; D. Pierce; R. Dragoset; P. First Microscopic aspects of the initial growth of metastable fcc iron on Au(111), J. Vac. Sci. Technol. A, Volume 10 (1992), p. 1981

[65] B. Voigtländer; G. Meyer; N. Amer Epitaxial growth of thin magnetic cobalt films on Au(111) studied by scanning tunneling microscopy, Phys. Rev. B, Volume 44 (1991), p. 10354

[66] S. Padovani; F. Scheurer; J. Bucher Burrowing self-organized cobalt clusters into a gold substrate, Europhys. Lett., Volume 45 (1999), p. 327

[67] A. Stephenson; C. Baddeley; M. Tikhov; R. Lambert Nucleation and growth of catalytically active Pd islands on Au(111)-22×3 studied by scanning tunneling microscopy, Surf. Sci., Volume 398 (1998), p. 172

[68] E. Altman; R. Colton Growth of Rh on Au(111): surface intermixing of immiscible metals, Surf. Sci., Volume 304 (1994), p. L400

[69] V. Repain; G. Baudot; H. Ellmer; S. Rousset Two-dimensional long-range ordered growth of uniform cobalt nanostructures on a Au(111) vicinal template, Europhys. Lett., Volume 58 (2002), p. 730

[70] V. Shchukin; D. Bimberg Spontaneous ordering of nanostructures on crystal surfaces, Rev. Mod. Phys., Volume 71 (1999), p. 1125

[71] F. Himpsel; J. Ortega; G. Mankey; R. Willis Magnetic nanostructures, Adv. Phys., Volume 47 (1998), p. 511

[72] J. Shen; R. Skomski; M. Klaua; J. Jenniches; S. Manoharan; J. Kirschner Magnetism in one dimension: Fe on Cu(111), Phys. Rev. B, Volume 56 (1997), p. 2340

[73] P. Gambardella; M. Blanc; L. Bürgi; K. Kuhnke; K. Kern Co growth on Pt(997): from monatomic chains to monolayer completion, Surf. Sci., Volume 449 (2000), p. 93

[74] P. Gambardella; A. Dallmeyer; K. Maiti; M. Malagoli; W. Eberhardt; K. Kern; C. Carbone Ferromagnetism in one-dimensional monatomic metal chains, Nature, Volume 416 (2002), p. 301

[75] P. Gambardella; S. Rusponi; M. Veronese; S. Dhesi; C. Grazioli; A. Dallmeyer; I. Cabria; R. Zeller; P. Dederichs; K. Kern; C. Carbone; H. Brune Giant magnetic anisotropy of single cobalt atoms and nanoparticules, Science, Volume 300 (2003), p. 1130

[76] L. Liz-Marzan Nanometals: formation and color, Materialstoday, Volume 7 (2004), p. 26

[77] V. Repain; J. Berroir; S. Rousset; J. Lecoeur Growth of self-organized cobalt nanostructures on Au(111) vicinal surfaces, Surf. Sci., Volume 447 (2000), p. L152

[78] V. Repain; G. Baudot; H. Ellmer; S. Rousset Ordered growth of cobalt nanostructures on Au(111) vicinal surfaces: nucleation mechanism and temperature behavior, Mat. Sci. Engin. B, Volume 96 (2002), p. 178

[79] G. Baudot; S. Rohart; V. Repain; H. Ellmer; Y. Girard; S. Rousset Temperature dependence of ordered cobalt nanodots growth on Au(788), Appl. Surf. Sci., Volume 212–213 (2003), p. 360

[80] C. Goyhenex; H. Bulou Theoretical insight in the energetics of Co adsorption on a reconstructed Au(111) substrate, Phys. Rev. B, Volume 63 (2001), p. 235404

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Nanometric artificial structuring of semiconductor surfaces for crystalline growth

J. Eymery; G. Biasiol; E. Kapon; ...

C. R. Phys (2005)


Epitaxial self-organization: from surfaces to magnetic materials

Olivier Fruchart

C. R. Phys (2005)


Self-organization on surfaces: foreword

Olivier Fruchart

C. R. Phys (2005)