[Formation de boîtes quantiques auto-assemblées lors de la transition Stranski–Krastanow : comparaison pour différents systèmes semiconducteurs]
Pour rendre compte de l'apparition (ou non) d'une transition Stranski–Krastanow (variation de 2D à 3D de la morphologie de surface) lors de la croissance épitaxiée de divers semiconducteurs ayant des paramètres de maille différents, nous présentons un modèle à l'équilibre prenant en compte non seulement le désaccord de paramètre, mais aussi l'énergie de formation des dislocations et l'énergie de surface. Cette approche met en évidence l'importance de ces paramètres, en particulier dans le cas des semiconducteurs II–VI tels que CdTe/ZnTe et CdSe/ZnSe : en effet pour ces systèmes, puisque les dislocations sont plus faciles à former que dans le cas des semiconducteurs III–V (i.e. InAs/GaAs) ou IV–IV (i.e. Ge/Si), une transition plastique apparaît aux dépends de la transition élastique 3D. Cependant, en diminuant le coût en énergie de surface, des boîtes quantiques à base de tellures et séléniures peuvent être aussi obtenues. Ceci est mis en évidence expérimentalement par des mesures de diffraction en incidence rasante, de microscopie à force atomique, et de spectroscopie optique. Le modèle est ensuite appliqué au système GaN/AlN, et ses limites sont discutées.
To account for the occurrence (or not) of the Stranski–Krastanow (SK) transition (two-dimensional to 3D change of surface morphology) during the epitaxial growth of various lattice-mismatched semiconductor systems, we present a simple equilibrium model taking into account not only the lattice mismatch, but also the dislocation formation energy and the surface energy. It demonstrates the importance of these parameters especially for II–VI systems such as CdTe/ZnTe and CdSe/ZnSe. For II–VIs indeed, as misfit dislocations are easier to form than in III–Vs (such as InAs/GaAs) or IV systems (Ge/Si), the 3D elastic transition is short-circuited by the plastic transition. Nevertheless, by lowering the surface energy cost, telluride and selenide quantum dots can also be grown as predicted by our model and as shown experimentally by reflection high-energy electron diffraction (RHEED), atomic force microscopy and optical measurements. This model is also applied to the case of GaN/AlN, before discussing its limits.
Mots-clés : Boîtes quantiques, Semiconducteurs, Épitaxie par jets moléculaires
Henri Mariette 1
@article{CRPHYS_2005__6_1_23_0, author = {Henri Mariette}, title = {Formation of self-assembled quantum dots induced by the {Stranski{\textendash}Krastanow} transition: a comparison of various semiconductor systems}, journal = {Comptes Rendus. Physique}, pages = {23--32}, publisher = {Elsevier}, volume = {6}, number = {1}, year = {2005}, doi = {10.1016/j.crhy.2004.11.003}, language = {en}, }
TY - JOUR AU - Henri Mariette TI - Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems JO - Comptes Rendus. Physique PY - 2005 SP - 23 EP - 32 VL - 6 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2004.11.003 LA - en ID - CRPHYS_2005__6_1_23_0 ER -
%0 Journal Article %A Henri Mariette %T Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems %J Comptes Rendus. Physique %D 2005 %P 23-32 %V 6 %N 1 %I Elsevier %R 10.1016/j.crhy.2004.11.003 %G en %F CRPHYS_2005__6_1_23_0
Henri Mariette. Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 23-32. doi : 10.1016/j.crhy.2004.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.003/
[1] Ber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. IIb, 146 (1938), p. 797
[2] Proc. Roy. Soc. London Ser. A, 198 (1949), p. 216
[3] See for example J.M. Gérard, in this issue
[4] Appl. Phys. Lett., 47 (1985), p. 1099
[5] Semicond. Sci. Technol., 73 (1994), p. 716 (See for example)
[6] Appl. Phys. Lett., 73 (1998), p. 3757
[7] Appl. Phys. Lett., 74 (1999), p. 3011
[8] Appl. Phys. Lett., 69 (1996), p. 3884
[9] Appl. Phys. Lett., 76 (2000), p. 418
[10] Appl. Phys. Lett., 56 (1990), p. 292
[11] C. R. Acad. Sci. Paris, Ser. IV, 58 (1998), p. 15989
[12] Phys. Rev. B, 60 (1999), p. 5851
[13] Appl. Phys. Lett., 70 (1997), p. 493
[14] Phys. Rev. Lett., 70 (1993), p. 2782
[15] Phys. Rev. Lett., 75 (1995), p. 93 (and references therein)
[16] Quantum Dot Heterostructures, Wiley, 1999 (p. 43)
[17]
, Springer-Verlag, Berlin, 1982 (vol. III/17a and b, and references therein)[18] J. Vac. Sci. Technol., 12 (1975), p. 126
[19] Mater. Sci. Rep., 7 (1991), p. 87
[20] J. Alloys Compd., 371 (2004), p. 63
[21] J. Cryst. Growth, 150 (1995), p. 351
[22] Appl. Phys. Lett., 82 (2003), p. 4340
[23] I.C.. Robin, R. André, H. Mariette, S. Tatarenko, Le Si Dang, J.M. Gérard, in: 3rd Int. Conf. Quantum Dots, Banff, 2003, Phys. E, in press
[24] J. Appl. Phys., 79 (1996), p. 3035
[25] J. Appl. Phys., 91 (2002), p. 4936
[26] J. Cryst. Growth, 237/239 (2002), p. 227
[27] J. Cryst. Growth, 184/185 (1998), p. 248
[28] Appl. Phys. Lett., 67 (1995), p. 3957
[29] J. Neugebauer, Private communication
[30] J. Appl. Phys., 91 (2002), p. 9638
[31] J. Appl. Phys., 81 (2002), p. 3064
[32] Thin Sol. Films, 69 (1992), p. 796 (See for example)
[33] Appl. Phys. Lett., 68 (1996), p. 3299
[34] J.B. Smathers, C.L. Workman, H. Yang, P. Ballet, G.J. Salamo, Private communication
[35] Phys. Rev. Lett., 70 (1993), p. 2782
[36] Phys. Rev. Lett., 82 (1999), p. 2753
[37] Phys. Rev. Lett., 80 (1998), p. 984
[38] Science, 279 (1998), p. 353
[39] Phys. Rev. Lett., 82 (1999), p. 1748
[40] Phys. Rev. Lett., 85 (1999), p. 1780
[41] Phys. Rev. B, 63 (2001), p. 245307
[42] Appl. Phys. Lett., 75 (1999), p. 962
[43] Appl. Phys. Lett., 84 (2004), p. 2907
[44] J. Eymery, G. Biasiol, T. Ogino, in this issue
- Effect of Extended Defects on AlGaN Quantum Dots for Electron-Pumped Ultraviolet Emitters, ACS Nano, Volume 18 (2024) no. 18, p. 11886 | DOI:10.1021/acsnano.4c01376
- , 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM) (2022), p. 29 | DOI:10.1109/edm55285.2022.9855073
- Modification of the surface energy and morphology of GaN monolayers on the AlN surface in an ammonia flow, Applied Physics Letters, Volume 120 (2022) no. 5 | DOI:10.1063/5.0077445
- Transformation of the elemental composition on the GaN surface during a 2D-3D transition, Applied Surface Science, Volume 577 (2022), p. 151802 | DOI:10.1016/j.apsusc.2021.151802
- Explorations on Growth of Blue-Green-Yellow-Red InGaN Quantum Dots by Plasma-Assisted Molecular Beam Epitaxy, Nanomaterials, Volume 12 (2022) no. 5, p. 800 | DOI:10.3390/nano12050800
- GaN Quantum-Dot Formation by a Temperature Increase in an Ammonia Flow, Semiconductors, Volume 56 (2022) no. 6, p. 340 | DOI:10.1134/s1063782622070053
- , 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM) (2021), p. 83 | DOI:10.1109/edm52169.2021.9507711
- Optical characterization by photoreflectance of GaN after its partial thermal decomposition, Optik, Volume 248 (2021), p. 168070 | DOI:10.1016/j.ijleo.2021.168070
- Density control of GaN quantum dots on AlN single crystal, Applied Physics Letters, Volume 114 (2019) no. 8 | DOI:10.1063/1.5083018
- Formation mechanisms of single-crystalline InN quantum dots fabricated via droplet epitaxy, Journal of Crystal Growth, Volume 493 (2018), p. 65 | DOI:10.1016/j.jcrysgro.2018.04.027
- Influence of the heterostructure design on the optical properties of GaN and Al0.1Ga0.9N quantum dots for ultraviolet emission, Journal of Applied Physics, Volume 122 (2017) no. 8 | DOI:10.1063/1.5000238
- Formation of GaN quantum dots by molecular beam epitaxy using NH3 as nitrogen source, Journal of Applied Physics, Volume 118 (2015) no. 2 | DOI:10.1063/1.4923425
- Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al0.5Ga0.5N quantum dots: strong effect of capping layer and atmospheric condition, Nanotechnology, Volume 25 (2014) no. 30, p. 305703 | DOI:10.1088/0957-4484/25/30/305703
- 7.4.1 Self-assembled quantum dots: Introduction, Growth and Structuring (2013), p. 352 | DOI:10.1007/978-3-540-68357-5_64
- Mechanism of GaN quantum dot overgrowth by Al0.5Ga0.5N: Strain evolution and phase separation, Journal of Applied Physics, Volume 111 (2012) no. 8 | DOI:10.1063/1.4704682
- InAs Epitaxy on GaAs(001): A Model Case of Strain-Driven Self-assembling of Quantum Dots, Self-Assembly of Nanostructures (2012), p. 73 | DOI:10.1007/978-1-4614-0742-3_2
- GaN/Al0.5Ga0.5N (11-22) semipolar nanostructures: A way to get high luminescence efficiency in the near ultraviolet range, Journal of Applied Physics, Volume 110 (2011) no. 8 | DOI:10.1063/1.3654053
- Theoretical study on critical thicknesses of InGaN grown on (0001) GaN, Journal of Crystal Growth, Volume 327 (2011) no. 1, p. 202 | DOI:10.1016/j.jcrysgro.2011.05.002
- Conditions for the formation of defectless quantum dots in the theoretical estimation of In x Ga1 − x As/GaAs heterostructures, Russian Microelectronics, Volume 40 (2011) no. 8, p. 587 | DOI:10.1134/s1063739711080026
- Stress-Driven Nucleation of Three-Dimensional Crystal Islands: From Quantum Dots to Nanoneedles, Crystal Growth Design, Volume 10 (2010) no. 9, p. 3949 | DOI:10.1021/cg100495b
- Tailoring the shape of GaN/AlxGa1−xN nanostructures to extend their luminescence in the visible range, Journal of Applied Physics, Volume 105 (2009) no. 3 | DOI:10.1063/1.3075899
- Growth of InxGa1−xN quantum dots by nitridation of nano-alloyed droplet method using MOCVD, Journal of Crystal Growth, Volume 311 (2009) no. 19, p. 4418 | DOI:10.1016/j.jcrysgro.2009.07.041
- Accommodation at the interface of highly dissimilar semiconductor/oxide epitaxial systems, Physical Review B, Volume 80 (2009) no. 15 | DOI:10.1103/physrevb.80.155308
- Ab initio investigation of the CdTe (001) surface, Superlattices and Microstructures, Volume 46 (2009) no. 5, p. 733 | DOI:10.1016/j.spmi.2009.07.025
- GaN/Al0.5Ga0.5N quantum dots and quantum dashes, physica status solidi (b), Volume 246 (2009) no. 4, p. 842 | DOI:10.1002/pssb.200880614
- , 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (2008), p. 673 | DOI:10.1109/icsict.2008.4734643
- Blue-light emission from GaN∕Al0.5Ga0.5N quantum dots, Applied Physics Letters, Volume 92 (2008) no. 5 | DOI:10.1063/1.2841825
- Stranski–Krastanov growth of GaN quantum dots on AlN template by metalorganic chemical vapor deposition, Journal of Applied Physics, Volume 104 (2008) no. 4 | DOI:10.1063/1.2969915
- Self-assembly of heterojunction quantum dots, Applied Physics Letters, Volume 88 (2006) no. 16 | DOI:10.1063/1.2197930
- Role of patterning in islands nucleation on semiconductor surfaces, Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, p. 1046 | DOI:10.1016/j.crhy.2006.10.013
- Evolution of the amount of InAs in wetting layers in an InAs/GaAs quantum-dot system studied by reflectance difference spectroscopy, Nanotechnology, Volume 17 (2006) no. 9, p. 2207 | DOI:10.1088/0957-4484/17/9/022
- An analytical model for the energetics of quantum dots: beyond the small slope assumption, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 462 (2006) no. 2076, p. 3523 | DOI:10.1098/rspa.2006.1723
- Self-organization on surfaces: foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 1, p. 3 | DOI:10.1016/j.crhy.2004.11.009
Cité par 33 documents. Sources : Crossref
Commentaires - Politique