Comptes Rendus
Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems
[Formation de boîtes quantiques auto-assemblées lors de la transition Stranski–Krastanow : comparaison pour différents systèmes semiconducteurs]
Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 23-32.

Pour rendre compte de l'apparition (ou non) d'une transition Stranski–Krastanow (variation de 2D à 3D de la morphologie de surface) lors de la croissance épitaxiée de divers semiconducteurs ayant des paramètres de maille différents, nous présentons un modèle à l'équilibre prenant en compte non seulement le désaccord de paramètre, mais aussi l'énergie de formation des dislocations et l'énergie de surface. Cette approche met en évidence l'importance de ces paramètres, en particulier dans le cas des semiconducteurs II–VI tels que CdTe/ZnTe et CdSe/ZnSe : en effet pour ces systèmes, puisque les dislocations sont plus faciles à former que dans le cas des semiconducteurs III–V (i.e. InAs/GaAs) ou IV–IV (i.e. Ge/Si), une transition plastique apparaît aux dépends de la transition élastique 3D. Cependant, en diminuant le coût en énergie de surface, des boîtes quantiques à base de tellures et séléniures peuvent être aussi obtenues. Ceci est mis en évidence expérimentalement par des mesures de diffraction en incidence rasante, de microscopie à force atomique, et de spectroscopie optique. Le modèle est ensuite appliqué au système GaN/AlN, et ses limites sont discutées.

To account for the occurrence (or not) of the Stranski–Krastanow (SK) transition (two-dimensional to 3D change of surface morphology) during the epitaxial growth of various lattice-mismatched semiconductor systems, we present a simple equilibrium model taking into account not only the lattice mismatch, but also the dislocation formation energy and the surface energy. It demonstrates the importance of these parameters especially for II–VI systems such as CdTe/ZnTe and CdSe/ZnSe. For II–VIs indeed, as misfit dislocations are easier to form than in III–Vs (such as InAs/GaAs) or IV systems (Ge/Si), the 3D elastic transition is short-circuited by the plastic transition. Nevertheless, by lowering the surface energy cost, telluride and selenide quantum dots can also be grown as predicted by our model and as shown experimentally by reflection high-energy electron diffraction (RHEED), atomic force microscopy and optical measurements. This model is also applied to the case of GaN/AlN, before discussing its limits.

Publié le :
DOI : 10.1016/j.crhy.2004.11.003
Keywords: Quantum dots, Semiconductors, Molecular beam epitaxy
Mots-clés : Boîtes quantiques, Semiconducteurs, Épitaxie par jets moléculaires

Henri Mariette 1

1 CEA-CNRS group “Nanophysique et Semiconducteurs” : CNRS, laboratoire de spectrométrie physique, université J. Fourier-Grenoble I, and CEA, département de recherche fondamentale sur la matière condensée/SPMM, 17, avenue des Martyrs, 38054 Grenoble, France
@article{CRPHYS_2005__6_1_23_0,
     author = {Henri Mariette},
     title = {Formation of self-assembled quantum dots induced by the {Stranski{\textendash}Krastanow} transition: a comparison of various semiconductor systems},
     journal = {Comptes Rendus. Physique},
     pages = {23--32},
     publisher = {Elsevier},
     volume = {6},
     number = {1},
     year = {2005},
     doi = {10.1016/j.crhy.2004.11.003},
     language = {en},
}
TY  - JOUR
AU  - Henri Mariette
TI  - Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 23
EP  - 32
VL  - 6
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.11.003
LA  - en
ID  - CRPHYS_2005__6_1_23_0
ER  - 
%0 Journal Article
%A Henri Mariette
%T Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems
%J Comptes Rendus. Physique
%D 2005
%P 23-32
%V 6
%N 1
%I Elsevier
%R 10.1016/j.crhy.2004.11.003
%G en
%F CRPHYS_2005__6_1_23_0
Henri Mariette. Formation of self-assembled quantum dots induced by the Stranski–Krastanow transition: a comparison of various semiconductor systems. Comptes Rendus. Physique, Self-organization on surfaces, Volume 6 (2005) no. 1, pp. 23-32. doi : 10.1016/j.crhy.2004.11.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.11.003/

[1] I.N. Stranski; L. Krastanow Ber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. IIb, 146 (1938), p. 797

[2] F.C. Frank; J.H. van der Merwe Proc. Roy. Soc. London Ser. A, 198 (1949), p. 216

[3] See for example J.M. Gérard, in this issue

[4] L. Goldstein; F. Glas; J.Y. Marzin; M.N. Charasse; G. Le Roux Appl. Phys. Lett., 47 (1985), p. 1099

[5] J.-Y. Marzin; J.-M. Gérard; A. Izrael; D. Barrier; G. Bastard; D. Leonard; K. Pond; P.M. Petroff; R. Nötzel Semicond. Sci. Technol., 73 (1994), p. 716 (See for example)

[6] Y. Terai; S. Kuroda; K. Takita; T. Okuno; Y. Masumoto Appl. Phys. Lett., 73 (1998), p. 3757

[7] G. Karczewski; S. Mackowski; M. Kutrowski; T. Wojtowicz; J. Kossut Appl. Phys. Lett., 74 (1999), p. 3011

[8] S.H. Xin; P.D. Wang; A. Yin; C. Kim; M. Dobrowolska; J.L. Merz; J.K. Furdyna Appl. Phys. Lett., 69 (1996), p. 3884

[9] D. Schikora; S. Schwedhelm; D.J. As; K. Lischka; D. Litvinov; A. Rosenauer; D. Gerthsen; M. Strassburg; A. Hoffmann; D. Bimberg Appl. Phys. Lett., 76 (2000), p. 418

[10] J. Cibert; Y. Gobil; Le Si Dang; S. Tatarenko; G. Feuillet; P.H. Jouneau; K. Saminadayar Appl. Phys. Lett., 56 (1990), p. 292

[11] F. Widmann; J. Simon; B. Daudin; G. Feuillet; J.L. Rouvière; N.T. Pelekanos; G. Fishman; C. Adelmann; M. Arlery; B. Daudin; G. Feuillet; G. Fishman; Le Si Dang; H. Mariette; N.T. Pelekanos; J.L. Rouvière; J. Simon; F. Widmann C. R. Acad. Sci. Paris, Ser. IV, 58 (1998), p. 15989

[12] Vinh Le Thanh; V. Yam; P. Boucaud; F. Fortuna; C. Ulysse; D. Bouchier; L. Vervoort; J.-M. Lourtioz Phys. Rev. B, 60 (1999), p. 5851

[13] G. Capellini; L. Di Gaspare; F. Evangelisti; E. Palange Appl. Phys. Lett., 70 (1997), p. 493

[14] J. Tersoff; R.M. Tromp Phys. Rev. Lett., 70 (1993), p. 2782

[15] C. Priester; M. Lannoo Phys. Rev. Lett., 75 (1995), p. 93 (and references therein)

[16] D. Bimberg; M. Grundmann; N.N. Ledensov Quantum Dot Heterostructures, Wiley, 1999 (p. 43)

[17] Landolt-Börnstein, Springer-Verlag, Berlin, 1982 (vol. III/17a and b, and references therein)

[18] J.W. Matthews J. Vac. Sci. Technol., 12 (1975), p. 126

[19] E.A. Fitzgerald Mater. Sci. Rep., 7 (1991), p. 87

[20] F. Tinjod; I. Robin; R. André; K. Kheng; H. Mariette J. Alloys Compd., 371 (2004), p. 63

[21] J.-M. Gérard; J.B. Génin; J. Lefebvre; J.M. Moisson; N. Lebouché; F. Barthe J. Cryst. Growth, 150 (1995), p. 351

[22] F. Tinjod; B. Gilles; S. Moehl; K. Kheng; H. Mariette Appl. Phys. Lett., 82 (2003), p. 4340

[23] I.C.. Robin, R. André, H. Mariette, S. Tatarenko, Le Si Dang, J.M. Gérard, in: 3rd Int. Conf. Quantum Dots, Banff, 2003, Phys. E, in press

[24] J.-M. Hartmann; G. Feuillet; M. Charleux; H. Mariette J. Appl. Phys., 79 (1996), p. 3035

[25] L. Marsal; L. Besombes; F. Tinjod; K. Kheng; A. Wasiela; B. Gilles; J.-L. Rouvière; H. Mariette J. Appl. Phys., 91 (2002), p. 4936

[26] H. Mariette; L. Marsal; L. Besombes; F. Tinjod; B. Gilles; K. Kheng; J.-L. Rouvière J. Cryst. Growth, 237/239 (2002), p. 227

[27] M. Rabe; M. Lowisch; F. Henneberger J. Cryst. Growth, 184/185 (1998), p. 248

[28] M.B. Veron; M. Sauvage-Simkin; V. Etgens; S. Tatarenko; H. van der Vegt; S. Ferrer Appl. Phys. Lett., 67 (1995), p. 3957

[29] J. Neugebauer, Private communication

[30] C. Adelmann; J. Brault; D. Jalabert; P. Gentil; H. Mariette; G. Mula; B. Daudin J. Appl. Phys., 91 (2002), p. 9638

[31] C. Adelmann; N. Gogneau; E. Sarigiannidou; J.-L. Rouviere; B. Daudin; N. Gogneau; D. Jalabert; E. Monroy; T. Shibata; M. Tanaka; B. Daudin J. Appl. Phys., 81 (2002), p. 3064

[32] N. Grandjean; J. Massies; V.H. Etgens; E. Tournié; K.H. Ploog Thin Sol. Films, 69 (1992), p. 796 (See for example)

[33] N.P. Kobayashi; T.R. Ramachandran; P. Chen; A. Madhukar Appl. Phys. Lett., 68 (1996), p. 3299

[34] J.B. Smathers, C.L. Workman, H. Yang, P. Ballet, G.J. Salamo, Private communication

[35] J. Tersoff; R.M. Tromp Phys. Rev. Lett., 70 (1993), p. 2782

[36] I. Daruka; J. Tersoff; A.L. Barabasi Phys. Rev. Lett., 82 (1999), p. 2753

[37] F.M. Ross; J. Tersoff; R.M. Tromp Phys. Rev. Lett., 80 (1998), p. 984

[38] G. Medeiros-Ribeiro; A.M. Bratkovski; T.I. Kamins; D.A. Ohlberg; R.S. Williams Science, 279 (1998), p. 353

[39] M. Bayer; A. Kuther; A. Forchel; A. Gorbunov; V.B. Timofeev; F. Schäfer; J.P. Reithmaier; S.N. Walck Phys. Rev. Lett., 82 (1999), p. 1748

[40] V.D. Kulakovskii; G. Bacher; R. Weigand; T. Kümmell; A. Forchel; E. Borovitskaya; K. Leonardi; D. Hommel Phys. Rev. Lett., 85 (1999), p. 1780

[41] A. Bourret; C. Adelmann; B. Daudin; G. Feuillet; G. Mula Phys. Rev. B, 63 (2001), p. 245307

[42] B. Damilano; N. Grandjean; F. Semond; J. Massies; M. Leroux Appl. Phys. Lett., 75 (1999), p. 962

[43] S. Watanabe; E. Pelucchi; B. Dwir; M.H. Baier; K. Leifer; E. Kapon Appl. Phys. Lett., 84 (2004), p. 2907

[44] J. Eymery, G. Biasiol, T. Ogino, in this issue

  • Jesus Cañas; Nevine Rochat; Adeline Grenier; Audrey Jannaud; Zineb Saghi; Jean-Luc Rouviere; Edith Bellet-Amalric; Anjali Harikumar; Catherine Bougerol; Lorenzo Rigutti; Eva Monroy Effect of Extended Defects on AlGaN Quantum Dots for Electron-Pumped Ultraviolet Emitters, ACS Nano, Volume 18 (2024) no. 18, p. 11886 | DOI:10.1021/acsnano.4c01376
  • Yan E. Maidebura; Timur V. Malin; Denis S. Milakhin; Sergey A. Ponomarev; Konstantin S. Zhuravlev, 2022 IEEE 23rd International Conference of Young Professionals in Electron Devices and Materials (EDM) (2022), p. 29 | DOI:10.1109/edm55285.2022.9855073
  • Y. E. Maidebura; T. V. Malin; K. S. Zhuravlev Modification of the surface energy and morphology of GaN monolayers on the AlN surface in an ammonia flow, Applied Physics Letters, Volume 120 (2022) no. 5 | DOI:10.1063/5.0077445
  • Y.E. Maidebura; Mansurov V.G.; Malin T.V.; Zhuravlev K.S. Transformation of the elemental composition on the GaN surface during a 2D-3D transition, Applied Surface Science, Volume 577 (2022), p. 151802 | DOI:10.1016/j.apsusc.2021.151802
  • Xue Zhang; Zhiwei Xing; Wenxian Yang; Haibing Qiu; Ying Gu; Yuta Suzuki; Sakuya Kaneko; Yuki Matsuda; Shinji Izumi; Yuichi Nakamura; Yong Cai; Lifeng Bian; Shulong Lu; Atsushi Tackeuchi Explorations on Growth of Blue-Green-Yellow-Red InGaN Quantum Dots by Plasma-Assisted Molecular Beam Epitaxy, Nanomaterials, Volume 12 (2022) no. 5, p. 800 | DOI:10.3390/nano12050800
  • Y. E. Maidebura; T. V. Malin; K. S. Zhuravlev GaN Quantum-Dot Formation by a Temperature Increase in an Ammonia Flow, Semiconductors, Volume 56 (2022) no. 6, p. 340 | DOI:10.1134/s1063782622070053
  • Yan E. Maidebura; Vladimir G. Mansurov; Timur V. Malin; Denis. S. Milakhin; Konstantin S. Zhuravlev, 2021 IEEE 22nd International Conference of Young Professionals in Electron Devices and Materials (EDM) (2021), p. 83 | DOI:10.1109/edm52169.2021.9507711
  • W. Malek; A. Kahouli; M. Bouzidi; N. Chaaben; Abdullah S. Alshammari; J.P. Salvestrini; A. Rebey Optical characterization by photoreflectance of GaN after its partial thermal decomposition, Optik, Volume 248 (2021), p. 168070 | DOI:10.1016/j.ijleo.2021.168070
  • Sebastian Tamariz; Gordon Callsen; Nicolas Grandjean Density control of GaN quantum dots on AlN single crystal, Applied Physics Letters, Volume 114 (2019) no. 8 | DOI:10.1063/1.5083018
  • P. Aseev; Ž. Gačević; J.M. Mánuel; J.J. Jiménez; R. García; F.M. Morales; E. Calleja Formation mechanisms of single-crystalline InN quantum dots fabricated via droplet epitaxy, Journal of Crystal Growth, Volume 493 (2018), p. 65 | DOI:10.1016/j.jcrysgro.2018.04.027
  • S. Matta; J. Brault; T. H. Ngo; B. Damilano; M. Korytov; P. Vennéguès; M. Nemoz; J. Massies; M. Leroux; B. Gil Influence of the heterostructure design on the optical properties of GaN and Al0.1Ga0.9N quantum dots for ultraviolet emission, Journal of Applied Physics, Volume 122 (2017) no. 8 | DOI:10.1063/1.5000238
  • B. Damilano; J. Brault; J. Massies Formation of GaN quantum dots by molecular beam epitaxy using NH3 as nitrogen source, Journal of Applied Physics, Volume 118 (2015) no. 2 | DOI:10.1063/1.4923425
  • Je-Hyung Kim; Donia Elmaghraoui; Mathieu Leroux; Maxim Korytov; Philippe Vennéguès; Sihem Jaziri; Julien Brault; Yong-Hoon Cho Strain- and surface-induced modification of photoluminescence from self-assembled GaN/Al0.5Ga0.5N quantum dots: strong effect of capping layer and atmospheric condition, Nanotechnology, Volume 25 (2014) no. 30, p. 305703 | DOI:10.1088/0957-4484/25/30/305703
  • F. Henneberger 7.4.1 Self-assembled quantum dots: Introduction, Growth and Structuring (2013), p. 352 | DOI:10.1007/978-3-540-68357-5_64
  • M. Korytov; J. A. Budagosky; J. Brault; T. Huault; M. Benaissa; T. Neisius; J.-L. Rouvière; P. Vennéguès Mechanism of GaN quantum dot overgrowth by Al0.5Ga0.5N: Strain evolution and phase separation, Journal of Applied Physics, Volume 111 (2012) no. 8 | DOI:10.1063/1.4704682
  • E. Placidi; F. Arciprete; R. Magri; M. Rosini; A. Vinattieri; L. Cavigli; M. Gurioli; E. Giovine; L. Persichetti; M. Fanfoni; F. Patella; A. Balzarotti InAs Epitaxy on GaAs(001): A Model Case of Strain-Driven Self-assembling of Quantum Dots, Self-Assembly of Nanostructures (2012), p. 73 | DOI:10.1007/978-1-4614-0742-3_2
  • A. Kahouli; N. Kriouche; J. Brault; B. Damilano; P. Vennéguès; P. de Mierry; M. Leroux; A. Courville; O. Tottereau; J. Massies GaN/Al0.5Ga0.5N (11-22) semipolar nanostructures: A way to get high luminescence efficiency in the near ultraviolet range, Journal of Applied Physics, Volume 110 (2011) no. 8 | DOI:10.1063/1.3654053
  • Wei Zhao; Lai Wang; Jiaxing Wang; Zhibiao Hao; Yi Luo Theoretical study on critical thicknesses of InGaN grown on (0001) GaN, Journal of Crystal Growth, Volume 327 (2011) no. 1, p. 202 | DOI:10.1016/j.jcrysgro.2011.05.002
  • R. Kh. Akchurin; N. T. Vagapova Conditions for the formation of defectless quantum dots in the theoretical estimation of In x Ga1 − x As/GaAs heterostructures, Russian Microelectronics, Volume 40 (2011) no. 8, p. 587 | DOI:10.1134/s1063739711080026
  • V. G. Dubrovskii; N. V. Sibirev; X. Zhang; R. A. Suris Stress-Driven Nucleation of Three-Dimensional Crystal Islands: From Quantum Dots to Nanoneedles, Crystal Growth Design, Volume 10 (2010) no. 9, p. 3949 | DOI:10.1021/cg100495b
  • J. Brault; T. Huault; F. Natali; B. Damilano; D. Lefebvre; M. Leroux; M. Korytov; J. Massies Tailoring the shape of GaN/AlxGa1−xN nanostructures to extend their luminescence in the visible range, Journal of Applied Physics, Volume 105 (2009) no. 3 | DOI:10.1063/1.3075899
  • Heon Song; Seon-Ho Lee; Eun-Su Jang; Dong-Wook Kim; R. Navamathavan; Jin Soo Kim; Cheul-Ro Lee Growth of InxGa1−xN quantum dots by nitridation of nano-alloyed droplet method using MOCVD, Journal of Crystal Growth, Volume 311 (2009) no. 19, p. 4418 | DOI:10.1016/j.jcrysgro.2009.07.041
  • G. Saint-Girons; J. Cheng; P. Regreny; L. Largeau; G. Patriarche; G. Hollinger Accommodation at the interface of highly dissimilar semiconductor/oxide epitaxial systems, Physical Review B, Volume 80 (2009) no. 15 | DOI:10.1103/physrevb.80.155308
  • B. Rerbal; G. Merad; H. Mariette; H.I. Faraoun; J.-M. Raulot Ab initio investigation of the CdTe (001) surface, Superlattices and Microstructures, Volume 46 (2009) no. 5, p. 733 | DOI:10.1016/j.spmi.2009.07.025
  • Thomas Huault; Julien Brault; Franck Natali; Benjamin Damilano; Denis Lefebvre; Rabih Tauk; Mathieu Leroux; Jean Massies GaN/Al0.5Ga0.5N quantum dots and quantum dashes, physica status solidi (b), Volume 246 (2009) no. 4, p. 842 | DOI:10.1002/pssb.200880614
  • Yonghai Chen; Chenguang Tang; Bo Xu; Peng Jin; Zhanguo Wang, 2008 9th International Conference on Solid-State and Integrated-Circuit Technology (2008), p. 673 | DOI:10.1109/icsict.2008.4734643
  • T. Huault; J. Brault; F. Natali; B. Damilano; D. Lefebvre; L. Nguyen; M. Leroux; J. Massies Blue-light emission from GaN∕Al0.5Ga0.5N quantum dots, Applied Physics Letters, Volume 92 (2008) no. 5 | DOI:10.1063/1.2841825
  • J. C. Zhang; B. Meyler; A. Vardi; G. Bahir; J. Salzman Stranski–Krastanov growth of GaN quantum dots on AlN template by metalorganic chemical vapor deposition, Journal of Applied Physics, Volume 104 (2008) no. 4 | DOI:10.1063/1.2969915
  • K. G. Eyink; D. H. Tomich; J. J. Pitz; L. Grazulis; K. Mahalingam; J. M. Shank Self-assembly of heterojunction quantum dots, Applied Physics Letters, Volume 88 (2006) no. 16 | DOI:10.1063/1.2197930
  • Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; Anna Sgarlata; Massimo Fanfoni; Fulvia Patella; Adalberto Balzarotti Role of patterning in islands nucleation on semiconductor surfaces, Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, p. 1046 | DOI:10.1016/j.crhy.2006.10.013
  • Y H Chen; P Jin; L Y Liang; X L Ye; Z G Wang; Arturo I Martinez Evolution of the amount of InAs in wetting layers in an InAs/GaAs quantum-dot system studied by reflectance difference spectroscopy, Nanotechnology, Volume 17 (2006) no. 9, p. 2207 | DOI:10.1088/0957-4484/17/9/022
  • S.P.A Gill; A.C.F Cocks An analytical model for the energetics of quantum dots: beyond the small slope assumption, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 462 (2006) no. 2076, p. 3523 | DOI:10.1098/rspa.2006.1723
  • Olivier Fruchart Self-organization on surfaces: foreword, Comptes Rendus. Physique, Volume 6 (2005) no. 1, p. 3 | DOI:10.1016/j.crhy.2004.11.009

Cité par 33 documents. Sources : Crossref

Commentaires - Politique