Comptes Rendus
Strings, gravity, and the quest for unification/Cordes, gravitation, et la quête d'unification
Minimal string theory
Comptes Rendus. Physique, Volume 6 (2005) no. 2, pp. 165-174.

We summarize recent progress in the understanding of minimal string theory, focusing on the worldsheet description of physical operators and D-branes. We review how a geometric interpretation of minimal string theory emerges naturally from the study of the D-branes. This simple geometric picture ties together many otherwise unrelated features of minimal string theory, and it leads directly to a worldsheet derivation of the dual matrix model.

Nous résummons les progrès récents dans la compréhension de la théorie minimale des cordes, en se concentrant sur la description des opérateurs physiques et des D-branes. Nous passons en revue comment une interprétation géomètrique de la théorie minimale des cordes émerge naturellement de l'étude des D-branes. Cette représentation géométrique simple associe plusieurs propriétés autrement indépendantes de la théorie minimale des cordes, et conduit directement à une dérivation à partir de la théorie de surface d'univers du modèle de matrice dual.

Published online:
DOI: 10.1016/j.crhy.2004.12.007
Keywords: D-branes, 2D gravity, Matrix models
Mot clés : D-branes, Gravité en 2D, Modèle de matrice
Nathan Seiberg 1; David Shih 2

1 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540, USA
2 Department of Physics, Princeton University, Princeton, NJ 08544, USA
@article{CRPHYS_2005__6_2_165_0,
     author = {Nathan Seiberg and David Shih},
     title = {Minimal string theory},
     journal = {Comptes Rendus. Physique},
     pages = {165--174},
     publisher = {Elsevier},
     volume = {6},
     number = {2},
     year = {2005},
     doi = {10.1016/j.crhy.2004.12.007},
     language = {en},
}
TY  - JOUR
AU  - Nathan Seiberg
AU  - David Shih
TI  - Minimal string theory
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 165
EP  - 174
VL  - 6
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crhy.2004.12.007
LA  - en
ID  - CRPHYS_2005__6_2_165_0
ER  - 
%0 Journal Article
%A Nathan Seiberg
%A David Shih
%T Minimal string theory
%J Comptes Rendus. Physique
%D 2005
%P 165-174
%V 6
%N 2
%I Elsevier
%R 10.1016/j.crhy.2004.12.007
%G en
%F CRPHYS_2005__6_2_165_0
Nathan Seiberg; David Shih. Minimal string theory. Comptes Rendus. Physique, Volume 6 (2005) no. 2, pp. 165-174. doi : 10.1016/j.crhy.2004.12.007. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.12.007/

[1] P.H. Ginsparg; G.W. Moore Lectures on 2-D gravity and 2-D string theory | arXiv

[2] P. Di Francesco; P.H. Ginsparg; J. Zinn-Justin 2-D Gravity and random matrices, Phys. Rep., Volume 254 (1995), p. 1 | arXiv

[3] H. Dorn; H.J. Otto Some conclusions for noncritical string theory drawn from two and three point functions in the Liouville sector | arXiv

[4] J. Teschner On the Liouville three point function, Phys. Lett. B, Volume 363 (1995), p. 65 | arXiv

[5] A.B. Zamolodchikov; A.B. Zamolodchikov Structure constants and conformal bootstrap in Liouville field theory, Nucl. Phys. B, Volume 477 (1996), p. 577 | arXiv

[6] V. Fateev; A.B. Zamolodchikov; A.B. Zamolodchikov Boundary Liouville field theory. I: Boundary state and boundary two-point function | arXiv

[7] J. Teschner Remarks on Liouville theory with boundary | arXiv

[8] A.B. Zamolodchikov; A.B. Zamolodchikov Liouville field theory on a pseudosphere | arXiv

[9] B. Ponsot; J. Teschner Boundary Liouville field theory: Boundary three point function, Nucl. Phys. B, Volume 622 (2002), p. 309 | arXiv

[10] J. McGreevy; H. Verlinde Strings from tachyons: The c=1 matrix reloaded, JHEP, Volume 0312 (2003), p. 054 | arXiv

[11] E.J. Martinec The annular report on non-critical string theory | arXiv

[12] I.R. Klebanov; J. Maldacena; N. Seiberg D-brane decay in two-dimensional string theory, JHEP, Volume 0307 (2003), p. 045 | arXiv

[13] J. McGreevy; J. Teschner; H. Verlinde Classical and quantum D-branes in 2D string theory, JHEP, Volume 0401 (2004), p. 039 | arXiv

[14] I.R. Klebanov; J. Maldacena; N. Seiberg Unitary and complex matrix models as 1-d type 0 strings | arXiv

[15] N. Seiberg; D. Shih Branes, rings and matrix models in minimal (super)string theory, JHEP, Volume 0402 (2004), p. 021 | arXiv

[16] D. Gaiotto; L. Rastelli A paradigm of open/closed duality: Liouville D-branes and the Kontsevich model | arXiv

[17] M. Hanada; M. Hayakawa; N. Ishibashi; H. Kawai; T. Kuroki; Y. Matsuo; T. Tada Loops versus matrices: The nonperturbative aspects of noncritical string, Prog. Theor. Phys., Volume 112 (2004), p. 131 | arXiv

[18] D. Kutasov; K. Okuyama; J.W. Park; N. Seiberg; D. Shih Annulus amplitudes and ZZ branes in minimal string theory, JHEP, Volume 0408 (2004), p. 026 | arXiv

[19] J. Ambjorn; S. Arianos; J.A. Gesser; S. Kawamoto The geometry of ZZ-branes | arXiv

[20] P. Di Francesco; P. Mathieu; D. Senechal Conformal Field Theory, Springer-Verlag, New York, 1997 (890 p)

[21] B.H. Lian; G.J. Zuckerman New selection rules and physical states in 2-D gravity: Conformal gauge, Phys. Lett. B, Volume 254 (1991), p. 417

[22] E. Witten Ground ring of two-dimensional string theory, Nucl. Phys. B, Volume 373 (1992), p. 187 | arXiv

[23] N. Seiberg Notes on quantum Liouville theory and quantum gravity, Prog. Theor. Phys. Suppl., Volume 102 (1990), p. 319

[24] P. Di Francesco; J.B. Zuber Fusion potentials. 1, J. Phys. A, Volume 26 (1993), p. 1441 | arXiv

[25] P. Di Francesco; D. Kutasov Unitary minimal models coupled to 2-D quantum gravity, Nucl. Phys. B, Volume 342 (1990), p. 589

[26] M. Goulian; M. Li Correlation functions in Liouville theory, Phys. Rev. Lett., Volume 66 (1991), p. 2051

[27] P. Di Francesco; D. Kutasov World sheet and space–time physics in two-dimensional (super)string theory, Nucl. Phys. B, Volume 375 (1992), p. 119 | arXiv

[28] S.H. Shenker, The strength of nonperturbative effects in string theory, RU-90-47. Presented at the Cargese Workshop on Random Surfaces, Quantum Gravity and Strings, Cargese, France, May 28 – June 1, 1990

[29] J. Polchinski Combinatorics of boundaries in string theory, Phys. Rev. D, Volume 50 (1994), p. 6041 | arXiv

[30] J. Maldacena; G.W. Moore; N. Seiberg; D. Shih Exact vs. semiclassical target space of the minimal string | arXiv

Cited by Sources:

Comments - Policy


Articles of potential interest

Modular bootstrap of boundary N=2 Liouville theory

Tohru Eguchi

C. R. Phys (2005)


Collisions of cosmic F- and D-strings

Nicholas Jones

C. R. Phys (2004)


Searching for extra dimensions at colliders

Marc Besançon

C. R. Phys (2003)