[Evolution of the shear modulus with pressure and temperature]
The aim of the present Note is to propose a predictive model of the shear modulus G versus pressure P and temperature T to complete the principal known elasto-plastic models implemented in hydrodynamic computer codes. The generic approach consists in modelling by considering the Lindemann theory at the melting point: the melting temperature and the shear vibration of the material are closely connected. The drastic fall of at the melting point is discussed and compared to experimental data achieved on tin by ultrasonics. Finally, we propose a relationship between and the melting temperature.
Nous proposons dans cette Note un modèle prédictif du module de cisaillement G en fonction de la pression P et de la température T afin de contribuer aux modèles élasto-plastiques principalement connus et introduits dans les codes numériques de dynamique rapide. L'approche générale consiste à modéliser en considérant la théorie de Lindemann au point de fusion : la température de fusion et la vibration de cisaillement du matériau sont intimement liées. La chute drastique de au point de fusion est discutée et confrontée à des mesures expérimentales ultrasonores sur de l'étain (β). Finalement, nous proposons une relation entre et la température de fusion .
Accepted:
Published online:
Keywords: Mechanics, Elasticity, Shear modulus, Modelling, Ultrasound, Speed of sound
Marie-Hélène Nadal 1; Philippe Le Poac 2; Emmanuel Fraizier 1
@article{CRPHYS_2005__6_4-5_567_0, author = {Marie-H\'el\`ene Nadal and Philippe Le Poac and Emmanuel Fraizier}, title = {\'Evolution du module de cisaillement avec la pression et la temp\'erature}, journal = {Comptes Rendus. Physique}, pages = {567--574}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.03.001}, language = {fr}, }
TY - JOUR AU - Marie-Hélène Nadal AU - Philippe Le Poac AU - Emmanuel Fraizier TI - Évolution du module de cisaillement avec la pression et la température JO - Comptes Rendus. Physique PY - 2005 SP - 567 EP - 574 VL - 6 IS - 4-5 PB - Elsevier DO - 10.1016/j.crhy.2005.03.001 LA - fr ID - CRPHYS_2005__6_4-5_567_0 ER -
Marie-Hélène Nadal; Philippe Le Poac; Emmanuel Fraizier. Évolution du module de cisaillement avec la pression et la température. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 567-574. doi : 10.1016/j.crhy.2005.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.03.001/
[1] A constitutive model for metals applicable at high-strain rate, J. Appl. Phys., Volume 51 (1980) no. 3, pp. 1498-1504
[2] Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engrg. Fracture Mech., Volume 21 (1985) no. 1, pp. 31-38
[3] Dislocation-mechanics-based constitutive relations for materials dynamics calculations, J. Appl. Phys., Volume 61 (1987) no. 5, pp. 1816-1825
[4] Thermally activated flow and strain rate history effects for some polycristalline fcc metals, Mater. Sci. Engrg., Volume 18 (1975), p. 121
[5] L. Preston, D.L. Tonks, D.C. Wallace, The rate dependence of the saturation flow stress of Cu and 1100 Al, Shock Compression of Condensed Matter, in: Proc. Amer. Phys. Soc. Top. Conf., Williamsburg, Virginia, 1991, pp. 423–426
[6] Jump in sound velocity between solid and liquid phases at melting point in pure metals, J. Phys. Soc. Jap., Volume 52 (1983) no. 10, pp. 3432-3435
[7] Change of ultrasonic wave velocity in Indium near the melting point, J. Phys. Soc. Jap., Volume 52 (1983) no. 8, pp. 2784-2789
[8] Vacancies and changes of sound velocity in metals, Acustica, Volume 80 (1994), pp. 81-84
[9] Ultrasonic velocity measurements in molten materials with the use of laser-generated ultrasound, Meas. Sci. Technol., Volume 9 (1998), p. 217
[10] Über die Berechnung molekularer Eigen-frequenzen, Annal. Phys. (1914), pp. 43-49
[11] Über die Berechnung molekularer Eigen-frequenzen, Phys. Z., Volume 11 (1910), pp. 609-612
[12] Laser-ultrasonics: Noncontact determination of the elastic moduli determination of β-Sn up and through the melting point, J. Appl. Phys., Volume 93 (2003) no. 1, pp. 649-654
[13] A continuous model of the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation, J. Appl. Phys., Volume 93 (2003) no. 5, pp. 2472-2480
[14] Analytic model of the shear modulus at all temperatures and densities, J. Phys. B, Volume 67 (2003), p. 094107/1-094107/9
[15] Thermophysical Properties of Matter, vol. 12, Plenum Press, New York, 1975 (p. 339)
[16] Non-contact measurement of the elastic constants of plutonium at elevated temperatures, J. Nuclear Mat., Volume 97 (1981), pp. 126-136
[17] Viscoelastic constants evaluation up to the melting temperature of metallic materials by laser-ultrasonics, Ultrasonics, Volume 40 (2002) no. 1–8, pp. 543-769
[18] Optical probing of the mechanical impulse response of a transducer, Appl. Phys. Lett., Volume 49 (1986), p. 1056
[19] Théorie de l'élasticité, Physique théorique, vol. 7, Mir, Moscou, 1967
[20] Elastic Waves in Solids I: Free and Guided Propagation, Springer-Verlag, Berlin, 1999 (p. 140)
[21] Metals Reference Book, vol. 3, Butterworths, London, 1967 (p. 708)
[22] Temperature dependence of the elastic constants, Phys. Rev. B, Volume 2 (1970) no. 10, pp. 3952-3958
[23] Constitutive behavior of tantalum and tantalum-tungsten alloys, Metall. Mat. Trans. A, Volume 27 (1996), pp. 2994-3006
[24] , Physical Acoustics, vol. 4B, Academic Press, New York and London, 1968, p. 56 (Chapter 11)
(W.P. Mason, ed.)Cited by Sources:
Comments - Policy