Nous proposons dans cette Note un modèle prédictif du module de cisaillement G en fonction de la pression P et de la température T afin de contribuer aux modèles élasto-plastiques principalement connus et introduits dans les codes numériques de dynamique rapide. L'approche générale consiste à modéliser
The aim of the present Note is to propose a predictive model of the shear modulus G versus pressure P and temperature T to complete the principal known elasto-plastic models implemented in hydrodynamic computer codes. The generic approach consists in modelling
Accepté le :
Publié le :
Keywords: Mechanics, Elasticity, Shear modulus, Modelling, Ultrasound, Speed of sound
Marie-Hélène Nadal 1 ; Philippe Le Poac 2 ; Emmanuel Fraizier 1
@article{CRPHYS_2005__6_4-5_567_0, author = {Marie-H\'el\`ene Nadal and Philippe Le Poac and Emmanuel Fraizier}, title = {\'Evolution du module de cisaillement avec la pression et la temp\'erature}, journal = {Comptes Rendus. Physique}, pages = {567--574}, publisher = {Elsevier}, volume = {6}, number = {4-5}, year = {2005}, doi = {10.1016/j.crhy.2005.03.001}, language = {fr}, }
TY - JOUR AU - Marie-Hélène Nadal AU - Philippe Le Poac AU - Emmanuel Fraizier TI - Évolution du module de cisaillement avec la pression et la température JO - Comptes Rendus. Physique PY - 2005 SP - 567 EP - 574 VL - 6 IS - 4-5 PB - Elsevier DO - 10.1016/j.crhy.2005.03.001 LA - fr ID - CRPHYS_2005__6_4-5_567_0 ER -
Marie-Hélène Nadal; Philippe Le Poac; Emmanuel Fraizier. Évolution du module de cisaillement avec la pression et la température. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 567-574. doi : 10.1016/j.crhy.2005.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.03.001/
[1] A constitutive model for metals applicable at high-strain rate, J. Appl. Phys., Volume 51 (1980) no. 3, pp. 1498-1504
[2] Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engrg. Fracture Mech., Volume 21 (1985) no. 1, pp. 31-38
[3] Dislocation-mechanics-based constitutive relations for materials dynamics calculations, J. Appl. Phys., Volume 61 (1987) no. 5, pp. 1816-1825
[4] Thermally activated flow and strain rate history effects for some polycristalline fcc metals, Mater. Sci. Engrg., Volume 18 (1975), p. 121
[5] L. Preston, D.L. Tonks, D.C. Wallace, The rate dependence of the saturation flow stress of Cu and 1100 Al, Shock Compression of Condensed Matter, in: Proc. Amer. Phys. Soc. Top. Conf., Williamsburg, Virginia, 1991, pp. 423–426
[6] Jump in sound velocity between solid and liquid phases at melting point in pure metals, J. Phys. Soc. Jap., Volume 52 (1983) no. 10, pp. 3432-3435
[7] Change of ultrasonic wave velocity in Indium near the melting point, J. Phys. Soc. Jap., Volume 52 (1983) no. 8, pp. 2784-2789
[8] Vacancies and changes of sound velocity in metals, Acustica, Volume 80 (1994), pp. 81-84
[9] Ultrasonic velocity measurements in molten materials with the use of laser-generated ultrasound, Meas. Sci. Technol., Volume 9 (1998), p. 217
[10] Über die Berechnung molekularer Eigen-frequenzen, Annal. Phys. (1914), pp. 43-49
[11] Über die Berechnung molekularer Eigen-frequenzen, Phys. Z., Volume 11 (1910), pp. 609-612
[12] Laser-ultrasonics: Noncontact determination of the elastic moduli determination of β-Sn up and through the melting point, J. Appl. Phys., Volume 93 (2003) no. 1, pp. 649-654
[13] A continuous model of the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation, J. Appl. Phys., Volume 93 (2003) no. 5, pp. 2472-2480
[14] Analytic model of the shear modulus at all temperatures and densities, J. Phys. B, Volume 67 (2003), p. 094107/1-094107/9
[15] Thermophysical Properties of Matter, vol. 12, Plenum Press, New York, 1975 (p. 339)
[16] Non-contact measurement of the elastic constants of plutonium at elevated temperatures, J. Nuclear Mat., Volume 97 (1981), pp. 126-136
[17] Viscoelastic constants evaluation up to the melting temperature of metallic materials by laser-ultrasonics, Ultrasonics, Volume 40 (2002) no. 1–8, pp. 543-769
[18] Optical probing of the mechanical impulse response of a transducer, Appl. Phys. Lett., Volume 49 (1986), p. 1056
[19] Théorie de l'élasticité, Physique théorique, vol. 7, Mir, Moscou, 1967
[20] Elastic Waves in Solids I: Free and Guided Propagation, Springer-Verlag, Berlin, 1999 (p. 140)
[21] Metals Reference Book, vol. 3, Butterworths, London, 1967 (p. 708)
[22] Temperature dependence of the elastic constants, Phys. Rev. B, Volume 2 (1970) no. 10, pp. 3952-3958
[23] Constitutive behavior of tantalum and tantalum-tungsten alloys, Metall. Mat. Trans. A, Volume 27 (1996), pp. 2994-3006
[24] , Physical Acoustics, vol. 4B, Academic Press, New York and London, 1968, p. 56 (Chapter 11)
(W.P. Mason, ed.)- Analytical models for the shear modulus of α-Pu and Ga-stabilized δ-Pu versus temperature and pressure from measurements, Journal of Applied Physics, Volume 109 (2011) no. 7 | DOI:10.1063/1.3563066
Cité par 1 document. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier