Comptes Rendus
Physique/Solides, fluides : propriétés mécanique et thermiques
Évolution du module de cisaillement avec la pression et la température
[Evolution of the shear modulus with pressure and temperature]
Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 567-574.

The aim of the present Note is to propose a predictive model of the shear modulus G versus pressure P and temperature T to complete the principal known elasto-plastic models implemented in hydrodynamic computer codes. The generic approach consists in modelling G(T) by considering the Lindemann theory at the melting point: the melting temperature and the shear vibration of the material are closely connected. The drastic fall of G(T) at the melting point is discussed and compared to experimental data achieved on tin (β) by ultrasonics. Finally, we propose a relationship between G(P,T) and the melting temperature.

Nous proposons dans cette Note un modèle prédictif du module de cisaillement G en fonction de la pression P et de la température T afin de contribuer aux modèles élasto-plastiques principalement connus et introduits dans les codes numériques de dynamique rapide. L'approche générale consiste à modéliser G(T) en considérant la théorie de Lindemann au point de fusion : la température de fusion et la vibration de cisaillement du matériau sont intimement liées. La chute drastique de G(T) au point de fusion est discutée et confrontée à des mesures expérimentales ultrasonores sur de l'étain (β). Finalement, nous proposons une relation entre G(P,T) et la température de fusion Tm.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crhy.2005.03.001
Mots-clés : Mécanique, Élasticité, Module de cisaillement, Modélisation, Ultrasons, Vitesse du son
Keywords: Mechanics, Elasticity, Shear modulus, Modelling, Ultrasound, Speed of sound

Marie-Hélène Nadal 1; Philippe Le Poac 2; Emmanuel Fraizier 1

1 Commissariat à l'Énergie Atomique, centre de Valduc, Département de Recherches sur les Matériaux Nucléaires, 21120 Is-sur-Tille, France
2 Commissariat à l'Énergie Atomique, centre de Saclay, Département des Matériaux pour le Nucléaires, 91190 Gif-sur-Yvette, France
@article{CRPHYS_2005__6_4-5_567_0,
     author = {Marie-H\'el\`ene Nadal and Philippe Le Poac and Emmanuel Fraizier},
     title = {\'Evolution du module de cisaillement avec la pression et la temp\'erature},
     journal = {Comptes Rendus. Physique},
     pages = {567--574},
     publisher = {Elsevier},
     volume = {6},
     number = {4-5},
     year = {2005},
     doi = {10.1016/j.crhy.2005.03.001},
     language = {fr},
}
TY  - JOUR
AU  - Marie-Hélène Nadal
AU  - Philippe Le Poac
AU  - Emmanuel Fraizier
TI  - Évolution du module de cisaillement avec la pression et la température
JO  - Comptes Rendus. Physique
PY  - 2005
SP  - 567
EP  - 574
VL  - 6
IS  - 4-5
PB  - Elsevier
DO  - 10.1016/j.crhy.2005.03.001
LA  - fr
ID  - CRPHYS_2005__6_4-5_567_0
ER  - 
%0 Journal Article
%A Marie-Hélène Nadal
%A Philippe Le Poac
%A Emmanuel Fraizier
%T Évolution du module de cisaillement avec la pression et la température
%J Comptes Rendus. Physique
%D 2005
%P 567-574
%V 6
%N 4-5
%I Elsevier
%R 10.1016/j.crhy.2005.03.001
%G fr
%F CRPHYS_2005__6_4-5_567_0
Marie-Hélène Nadal; Philippe Le Poac; Emmanuel Fraizier. Évolution du module de cisaillement avec la pression et la température. Comptes Rendus. Physique, Aircraft trailing vortices, Volume 6 (2005) no. 4-5, pp. 567-574. doi : 10.1016/j.crhy.2005.03.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.03.001/

[1] D.J. Steinberg; S.G. Cochran; M.W. Guinan A constitutive model for metals applicable at high-strain rate, J. Appl. Phys., Volume 51 (1980) no. 3, pp. 1498-1504

[2] G.R. Johnson; W.H. Cook Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engrg. Fracture Mech., Volume 21 (1985) no. 1, pp. 31-38

[3] F.J. Zerelli; R.W. Amstrong Dislocation-mechanics-based constitutive relations for materials dynamics calculations, J. Appl. Phys., Volume 61 (1987) no. 5, pp. 1816-1825

[4] J.R. Klepaczko Thermally activated flow and strain rate history effects for some polycristalline fcc metals, Mater. Sci. Engrg., Volume 18 (1975), p. 121

[5] L. Preston, D.L. Tonks, D.C. Wallace, The rate dependence of the saturation flow stress of Cu and 1100 Al, Shock Compression of Condensed Matter, in: Proc. Amer. Phys. Soc. Top. Conf., Williamsburg, Virginia, 1991, pp. 423–426

[6] H. Kamioka Jump in sound velocity between solid and liquid phases at melting point in pure metals, J. Phys. Soc. Jap., Volume 52 (1983) no. 10, pp. 3432-3435

[7] H. Kamioka Change of ultrasonic wave velocity in Indium near the melting point, J. Phys. Soc. Jap., Volume 52 (1983) no. 8, pp. 2784-2789

[8] T. Gorecki Vacancies and changes of sound velocity in metals, Acustica, Volume 80 (1994), pp. 81-84

[9] H. Nakano; Y. Matsuda; S. Nagai Ultrasonic velocity measurements in molten materials with the use of laser-generated ultrasound, Meas. Sci. Technol., Volume 9 (1998), p. 217

[10] P. Debye Über die Berechnung molekularer Eigen-frequenzen, Annal. Phys. (1914), pp. 43-49

[11] F.A. Lindemann Über die Berechnung molekularer Eigen-frequenzen, Phys. Z., Volume 11 (1910), pp. 609-612

[12] E. Fraizier; M.-H. Nadal; R. Oltra Laser-ultrasonics: Noncontact determination of the elastic moduli determination of β-Sn up and through the melting point, J. Appl. Phys., Volume 93 (2003) no. 1, pp. 649-654

[13] M.-H. Nadal; P. Le Poac A continuous model of the shear modulus as a function of pressure and temperature up to the melting point: analysis and ultrasonic validation, J. Appl. Phys., Volume 93 (2003) no. 5, pp. 2472-2480

[14] L. Burakovsky; C.W. Greef; D.L. Preston Analytic model of the shear modulus at all temperatures and densities, J. Phys. B, Volume 67 (2003), p. 094107/1-094107/9

[15] Y.S. Touloukian; R.K. Kirby; R.E. Taylor; P.D. Desai Thermophysical Properties of Matter, vol. 12, Plenum Press, New York, 1975 (p. 339)

[16] C.A. Calder; E.C. Draney; W.W. Wilcox Non-contact measurement of the elastic constants of plutonium at elevated temperatures, J. Nuclear Mat., Volume 97 (1981), pp. 126-136

[17] E. Fraizier; M.-H. Nadal; R. Oltra Viscoelastic constants evaluation up to the melting temperature of metallic materials by laser-ultrasonics, Ultrasonics, Volume 40 (2002) no. 1–8, pp. 543-769

[18] D. Royer; E. Dieulesaint Optical probing of the mechanical impulse response of a transducer, Appl. Phys. Lett., Volume 49 (1986), p. 1056

[19] L. Landau; E. Lifchitz Théorie de l'élasticité, Physique théorique, vol. 7, Mir, Moscou, 1967

[20] D. Royer; E. Dieulesaint Elastic Waves in Solids I: Free and Guided Propagation, Springer-Verlag, Berlin, 1999 (p. 140)

[21] J. Colin; M.C. Smithells Metals Reference Book, vol. 3, Butterworths, London, 1967 (p. 708)

[22] P. Varshni Temperature dependence of the elastic constants, Phys. Rev. B, Volume 2 (1970) no. 10, pp. 3952-3958

[23] S.R. Chen; G.T. Gray III Constitutive behavior of tantalum and tantalum-tungsten alloys, Metall. Mat. Trans. A, Volume 27 (1996), pp. 2994-3006

[24] G.M.B. Webber; R.W. Stephens (W.P. Mason, ed.), Physical Acoustics, vol. 4B, Academic Press, New York and London, 1968, p. 56 (Chapter 11)

Cited by Sources:

Comments - Policy