Spectroscopy is at the root of modern planetology, in that it gives access remotely to the possibility to analyze the physical properties of planets. Today, the spectacular advance in techniques and models available to planetology reach an accuracy giving access to new domains in planetary physics, as meteorology, physico-chemical processes, etc. This article is centred on the infrared spectroscopy techniques. It will describe some of the physical observables accessible to modern instrumentation, in space or from the ground. The theoretical as well as instrumental limitations will be given, and the expected progress in short or medium term will be described.
La spectroscopie a véritablement fondé la planétologie moderne en permettant d'analyser les propriétés physiques des planètes à distance. Aujourd'hui, les progrès spectaculaires des techniques et des modèles disponibles atteignent aujourd'hui une précision qui rend accessible des pans entiers de la physique planétaire (météorologie, processus physico-chimiques, etc.) Cet article, centré sur les techniques de spectroscopie infrarouge, décrira quelques unes des observables physiques accessibles par les instruments actuels, dans l'espace ou au sol, les limitations tant théoriques qu'instrumentales, et les avancées à attendre à court et moyen terme.
Mots-clés : Spectroscopie infrarouge, Planètes, Abondances, Rapports isotopiques
Pierre Drossart 1
@article{CRPHYS_2005__6_8_817_0, author = {Pierre Drossart}, title = {Infrared spectroscopy of planetary atmospheres}, journal = {Comptes Rendus. Physique}, pages = {817--824}, publisher = {Elsevier}, volume = {6}, number = {8}, year = {2005}, doi = {10.1016/j.crhy.2005.09.002}, language = {en}, }
Pierre Drossart. Infrared spectroscopy of planetary atmospheres. Comptes Rendus. Physique, Molecular spectroscopy and planetary atmospheres, Volume 6 (2005) no. 8, pp. 817-824. doi : 10.1016/j.crhy.2005.09.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.09.002/
[1] Naturwiss., 20 (1932), p. 851
[2] Atmospheric Radiation: Theoretical Basis, Oxford Univ. Press, New York, 1989
[3] Collision-induced absorption of H2H2 and H2He in the rotational and fundamental bands for planetary applications, Icarus, Volume 123 (1996), pp. 4-22
[4] The helium abundance of Jupiter from Voyager, J. Geophys. Res., Volume 86 (1981), p. 8713
[5] Infrared HCN lineshapes as a test of Galatry and speed-dependent Voigt profiles, J. Mol. Spectrosc., Volume 212 (2002), pp. 96-110
[6] Experimental and theoretical study of line mixing in methane spectra. IV. Influence of the temperature and of the band, J. Chem. Phys., Volume 113 (2000), pp. 5776-5783
[7] CH4 nonlocal thermodynamic equilibrium in the atmospheres of the giant planets, Icarus, Volume 85 (1990), pp. 355-379
[8] The C/H ratio in Jupiter from the Voyager infrared investigation, Astrophys. J., Volume 257 (1982), pp. 901-912
[9] The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation), JQSRT, Volume 60 (1996), pp. 665-710
[10] Management and study of spectroscopic information—the GEISA program, J. Quant. Spectrosc. Radiat. Transfer, Volume 48 (1992), pp. 509-518
[11] Analysis of Jupiter North Equatorial Belt hot spots in the 4–5-μm range from Galileo/near-infrared mapping spectrometer observations: Measurements of cloud opacity and water, and ammonia, J. Geophys. Res., Volume 103 (1998), pp. 23023-23042
[12] First results of ISO-SWS observations of Saturn: detection of CO_2_, CH_3_C_2_H, C_4_H_2_ and tropospheric H_2_O, Astronomy and Astrophysics, Volume 321 (1997), p. L13-L16
[13] First results of ISO-SWS observations of Jupiter, Astronomy and Astrophysics, Volume 315 (1996), p. L397-L400
[14] Titan: a satellite with an atmosphere, Astrophys. J., Volume 100 (1944), pp. 378-383
[15] A comparison of the atmospheres of Jupiter and Saturn: deep atmospheric composition, cloud structure, vertical mixing and origin, Planetary and Space Sci., Volume 47 (1999), pp. 1243-1262
[16] Proximate humid and dry regions in Jupiter's atmosphere indicate complex local meteorology, Nature, Volume 405 (2000), pp. 158-160
[17] The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer, J. Geophys. Res., Volume 103 (1996), pp. 22831-22846
[18] The deep atmosphere of Venus revealed by high resolution spectroscopy, Nature, Volume 356 (1990), pp. 508-511
[19] The atmosphere of Mars as constrained by remote sensing, Space Sci. Rev., Volume 96 (2001), pp. 411-424
[20] Detection of methane in the atmosphere of Mars, Science, Volume 306 (2004), pp. 1758-1761
[21] Special issue on deuterium in the Universe, Planetary and Space Sci., Volume 50 (2002) (1123–1123)
[22] Search for spatial variation in the Jovian 15N/14N ratio from Cassini/CIRS observations, Icarus, Volume 172 (2004), pp. 50-58
[23] Atmospheric thermal structures of the giant planets, Icarus, Volume 39 (1979), pp. 28-45
[24] Observation of pressure variations in the Martian atmosphere, Geophys. Res. Lett., Volume 30 (2003), p. ASC14-1
[25] Cloud structure and atmospheric composition of Jupiter retrieved from Galileo near-infrared mapping spectrometer real-time spectra, J. Geophys. Res., Volume 103 (1998), pp. 23001-23022
Cited by Sources:
Comments - Policy