Remote sensing based on quantitative spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations, through the use of characteristic spectral signatures of the different molecular species and their associated vibration–rotation and electronic bands in the microwave, infrared, and UV-visible domains. A reliable retrieval of the concentration profiles requires a good characterisation of measurement and spectral fitting errors. This includes an accurate knowledge of spectroscopic parameters of all transition lines or absorption cross sections of interest since uncertainties lead to systematic retrieval errors.
Les mesures à distances qui s'appuient sur la spectroscopie quantitative sont un outil puissant pour la mesure précise des concentrations d'espèces à l'état de trace dans l'atmosphère par l'utilisation des signatures spectrales caractéristiques des différentes espèces moléculaires, qui sont associées aux bandes de vibration–rotation et aux bandes électroniques dans les domaine micro-onde, infrarouge, et ultraviolet ou visible. Une inversion fiable du profil de concentration nécessite une bonne caractérisation des erreurs de mesure et d'ajustement des spectres. Ceci implique une connaissance précise des paramètres spectroscopiques de toutes les raies ou des sections efficaces d'absorption dont les incertitudes ont un impact direct sur les erreurs résultant de l'inversion des spectres observés.
Mots-clés : Atmosphère, Télédétection, Mesures à distance, Spectroscopie
Sébastien Payan 1; Jérôme de La Noë 2; Alain Hauchecorne 3; Claude Camy-Peyret 1
@article{CRPHYS_2005__6_8_825_0, author = {S\'ebastien Payan and J\'er\^ome de La No\"e and Alain Hauchecorne and Claude Camy-Peyret}, title = {A review of remote sensing techniques and related spectroscopy problems}, journal = {Comptes Rendus. Physique}, pages = {825--835}, publisher = {Elsevier}, volume = {6}, number = {8}, year = {2005}, doi = {10.1016/j.crhy.2005.07.013}, language = {en}, }
TY - JOUR AU - Sébastien Payan AU - Jérôme de La Noë AU - Alain Hauchecorne AU - Claude Camy-Peyret TI - A review of remote sensing techniques and related spectroscopy problems JO - Comptes Rendus. Physique PY - 2005 SP - 825 EP - 835 VL - 6 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2005.07.013 LA - en ID - CRPHYS_2005__6_8_825_0 ER -
%0 Journal Article %A Sébastien Payan %A Jérôme de La Noë %A Alain Hauchecorne %A Claude Camy-Peyret %T A review of remote sensing techniques and related spectroscopy problems %J Comptes Rendus. Physique %D 2005 %P 825-835 %V 6 %N 8 %I Elsevier %R 10.1016/j.crhy.2005.07.013 %G en %F CRPHYS_2005__6_8_825_0
Sébastien Payan; Jérôme de La Noë; Alain Hauchecorne; Claude Camy-Peyret. A review of remote sensing techniques and related spectroscopy problems. Comptes Rendus. Physique, Molecular spectroscopy and planetary atmospheres, Volume 6 (2005) no. 8, pp. 825-835. doi : 10.1016/j.crhy.2005.07.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.07.013/
[1] Manual of Remote Sensing, Falls Church, 1983
[2] Remote Sounding of Atmospheres, Cambridge Univ. Press, Cambridge, 1984
[3] M.J. Kurylo, R.J. Zander, The Network for the Detection of Stratospheric Change, NDSC, September 2001
[4] V. Vasic, D.G. Feist, S. Müller, N. Kämpfer, An airborne radiometer for stratospheric water vapour measurements at 183 GHz, IEEE Trans. Geosci. Remote Sensing, 2005, in press
[5] M. Oldfield, et al., MARSCHALS: development of an airborne millimeter-wave limb sounder, in: H. Fujisada, J.B. Lurie, K. Weber (Eds.), Sensors, Systems, and Next-Generation Satellites V, in: Proc. SPIE, vol. 4540, 2001, pp. 221–228
[6] Millimeter-wave spectroscopic data knowledge and retrieval accuracy for MASTER, Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 17-22
[7] Submillimeter, millimeter, and microwave spectral line catalogue, J. Quant. Spectrosc. Radiat. Transfer, Volume 60 (1998), pp. 883-890
[8] G. Wlodarczak, B. Bakri, J.-M. Colmont, J. Demaison, F. Rohart, A. Perrin, Millimeter-wave spectroscopic data knowledge and retrieval accuracy for MASTER, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004 pp. 14–16
[9] The Cologne Database for Molecular Spectroscopy, CDMS, Astron. Astrophys., Volume 370 (2001), p. L49-L52
[10] Recommended rest frequencies for observed interstellar molecular microwave transitions—1991 revision, J. Phys. Chem. Ref. Data, Volume 21 (1992), pp. 181-272
[11] The Smithsonian Astrophysical Observatory database SAO92, J. Quant. Spectrosc. Radiat. Transfer, Volume 52 (1994), p. 447
[12] B.J. Drouin, G. Wlodarczak, F. Colmont, F. Rohart, Millimeter-wave spectroscopic data knowledge and retrieval accuracy for MASTER, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 14–16
[13] B.J. Drouin, H.M. Pickett, Laboratory and field studies I rotational spectroscopy at the JPL, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 10–13
[14] T. Amano, M.M. Yamada, Pressure broadening measurements at Ibaraki: BrO and O3, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 28–31
[15] G. Cazzoli, Pressure broadening and pressure shift measurements at the Laboratory of Millimeter-wave Spectroscopy in Bologna, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 32–35
[16] H. Ozeki, Spectroscopic measurements at high pressure with an heterodyne receiver, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 40–43
[17] I. Morino, K.M.T. Yamada, Sub-millimeter-wave line profile measurements at AIST, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 108–111
[18] J. Urban, et al., Odin/SMR observations of stratospheric water vapour and its isotopes: requirements on spectroscopy, in: Proceedings of the International Workshop on Critical Evaluation of mm/sub-mm-Wave Spectroscopic Data for Atmospheric Observations, 2004, pp. 69–74
[19] Spectroscopic Atlas of Atmospheric Microwindows in the middle Infra-Red, edited by Arndt Meier, Geoffrey C. Toon, Curtis P. Rinsland, Aaron Goldman, and Frank Hase, IRF Technical Report, 048, ISSN 0284-1738, May 2003
[20] ClONO2 total vertical column abundances above the Jungfraujoch Station, 1986–1994: long-term trend and winter–spring enhancements, J. Geophys. Res., Volume 101 (1996), pp. 3891-3899
[21] C. Camy-Peyret, P. Jeseck, T. Hawat, G. Durry, S. Payan, G. Berubé, L. Rochette, D. Huguenin, The LPMA balloon-borne FTIR spectrometer for remote sensing of atmospheric constituents, in: Proceedings 12th ESA Symposium on Rocket and Balloon Programmes and Related Research, Lillehammer, Norway, 29 May – 1 June 1995, ESA SP-370, 1995, pp. 323–328
[22] Retrieval of tropospheric ozone from simulations of nadir spectral radiances from space, J. Geophys. Res., Volume 107 (2002), p. 4589
[23] Remote sensing of vertical profiles of atmospheric trace constituents with MIPAS limb-emission spectrometers, Appl. Opt., Volume 35 (1996), pp. 2787-2796
[24] Comparison of MkIV balloon and ER-2 aircraft measurements of atmospheric trace gases, J. Geophys. Res., Volume 104 (1999), pp. 26779-26790
[25] C.E. Blom, C. Camy-Peyret, V. Catoire, K. Chance, H. Oelhaf, J. Ovarlez, S. Payan, M. Pirre, C. Piesch, G. Wetzel, Validation of MIPAS temperature profiles by stratospheric balloon and aircraft measurements, in: Proceedings of the Second Workshop on the Atmospheric Chemistry Validation of ENVISAT (ACVE-2), 3–7 May 2004, ESA-ESRIN, Frascati, Italy, ESA SP-562, 2004
[26] Atmospheric Measurements from Space, ESAMS '99, European Symposium, ESTEC, Noordwijk, The Netherlands, 18–22 January 1999, ESA WPP-161, 1999, pp. 1–2
[27] Selected science highlights from the first 5 years of the Upper Atmosphere Research Satellite (UARS) program, Rev. Geophys., Volume 36 (1998), pp. 183-210
[28] Remote sensing of the Earth's atmosphere from space with high-resolution Fourier-transform spectroscopy: development and methodology of data processing for the Atmospheric Trace Molecule Spectroscopy experiment, Appl. Opt., Volume 35 (1996), pp. 2774-2786
[29] Non-LTE Radiative Transfer in the Atmosphere, Series on Atmospheric, Oceanic and Planetary Physics, vol. 3, World Scientific, Singapore, 2001
[30] Envisat MIPAS—an instrument for atmospheric chemistry and climate research, ESA Bull., Volume 101 (2000)
[31] Infrared atmospheric sounding interferometer, Acta Astronautica, Volume 40 (1997), pp. 113-118
[32] Remote sensing of trace gases in the mid-infrared spectral region from a nadir view, Appl. Opt., Volume 34 (1995), pp. 467-479
[33] The ISSWG line-by-line intercomparison experiment, J. Quant. Spectrosc. Radiat. Transfer, Volume 77 (2003), pp. 433-453
[34] Inverse Method for Atmospheric Sounding: Theory and Practice, Series on Atmospheric, Oceanic and Planetary Physics, vol. 2, Singapore, World Scientific, 2000
[35] An inversion algorithm using neural networks to retrieve atmospheric CO total columns from high-resolution nadir radiances, J. Geophys. Res., Volume 104 (1999), pp. 23841-23854
[36] Selection of optimized microwindows for atmospheric spectroscopy, Appl. Opt., Volume 37 (1998), pp. 7660-7661
[37] L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, L.R. Brown, M.R. Carleer, C. Chackerian Jr, K. Chance, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S. Massie, A. Perrin, C.P. Rinsland, M.A.H. Smith, R.A. Toth, J. Vander Auwera, P. Varanasi, The HITRAN 2004 Molecular Spectroscopic Database, JQSRT, 2004, in press
[38] The 1997 spectroscopic GEISA databank, J. Quant. Spectrosc. Radiat. Transfer, Volume 62 (1999), pp. 205-254
[39] Atmospheric Radiation, Oxford Univ. Press, New York, 1989
[40] Concentration measurements of ozone in the 1200–300 ppbv range: an intercomparison between the BNM ultraviolet standard and infrared methods, Spectrochimica Acta Part A, Volume 60 (2004), pp. 3345-3352
[41] Interconsistency checks of ClONO2 retrievals from MIPAS-B spectra by using different bands and spectroscopic parameter, Proc. Int. Radiation Symposium 2000, Deepak Publ., 2001
[42] Infrared collision-induced absorption by N2 near 4.3 μm for atmospheric applications: Measurements and empirical modelling, Appl. Opt., Volume 35 (1996), pp. 5911-5917
[43] The water vapor continuum and its role in remote sensing, Optical Remote Sensing of the Atmosphere, vol. 2, OSA Technical Digest Series, Washington, DC, Optical Society of America, 1995, pp. 76-78
[44] Theory of the water continuum and validation, Atmospheric Res., Volume 36 (1995), pp. 69-94
[45] Influence of line-mixing on absorption by CO2 Q-branches in atmospheric balloon-borne spectra near 13 μm, J. Geophys. Res., Volume 102 (1997), pp. 12891-12899
[46] CO2 line-mixing in MIPAS limb emission spectra and its influence on retrieval of atmospheric parameters, J. Quant. Spectrosc. Radiat. Transfer, Volume 59 (1998), pp. 215-230
[47] Influence of line mixing on absorption by CH4 in atmospheric balloon-borne spectra near 3.3 μm, J. Quant. Spectrosc. Radiat. Transfer, Volume 68 (2001), pp. 117-133
[48] Spectral line shape considerations for limb temperature sounders, J. Geophys. Res., Volume 96 (1991), pp. 20859-20868
[49] The effect of collisions upon the Doppler width of spectral lines, Phys. Rev., Volume 89 (1953), pp. 472-473
[50] Intercomparison of total ozone data measured with Dobson and Brewer ozone spectrophotometers at Uccle (Belgium) from January 1984 to March 1991, including zenith sky observations, J. Geophys. Res., Volume 96 (1991), pp. 20711-20719
[51] Total nitrogen dioxide at the Arctic polar circle since 1990, Geophys. Res. Lett., Volume 21 (1994), pp. 1371-1374
[52] Measured trends in stratospheric ozone, Science, Volume 256 (1992), pp. 342-349
[53] Differential optical absorption spectroscopy (DOAS), Chem. Anal. Ser., Volume 127 (1994), pp. 27-83
[54] The Global Ozone Monitoring Experiment (GOME): Mission concept and first scientific results, J. Atmos. Sci., Volume 56 (1999), pp. 151-175
[55] SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronautica, Volume 35 (1995), p. 445
[56] The OSIRIS instrument on the Odin spacecraft, Can. J. Phys., Volume 82 (2004), pp. 411-422 | DOI
[57] An overview of SAGE I and II ozone measurements, Planet. Space Sci., Volume 37 (1989), pp. 1567-1586
[58] First results from POAM II: The dissipation of the 1993 Antarctic ozone hole, Geophys. Res. Lett., Volume 22 (1995), pp. 909-912
[59] A. Hauchecorne, J.-L. Bertaux, F. Dalaudier, C. Cot, J.-C. Lebrun, S. Bekki, M. Marchand, E. Kyrölä, J. Tamminen, V. Sofieva, D. Fussen, F. Vanhellemont, O. Fanton d'Andon, G. Barrot, A. Mangin, B. Théodore, M. Guirlet, P. Snoeij, R. Koopman, L. Saavedra de Miguel, R. Fraisse, J.-B. Renard, GOMOS NO2 NO3, First simultaneous global climatologies of night-time stratospheric NO2 and NO3 observed by GOMOS/ENVISAT in 2003, J. Geophys. Res., 2005, in press
[60] Balloon-borne Limb profiling of UV/vis skylight radiances, O3, NO2, and BrO: Technical set-up and validation of the method, Atmos. Chem. Phys., Volume 5 (2005), pp. 1409-1422
[61] SALOMON: A new, light balloon borne UV-visible spectrometer for nighttime observations of stratospheric trace-gas species, Appl. Opt., Volume 39 (2000), pp. 386-392
[62] Nocturnal vertical distribution of stratospheric O3, NO2 and NO3 from balloon measurements, J. Geophys. Res., Volume 101 (1996), pp. 28793-28804
[63] Systematic lidar measurements of the stratospheric ozone vertical distribution, Geophys. Res. Lett., Volume 16 (1989), pp. 547-550
[64] Raman DIAL measurements of stratospheric ozone in he presence of volcanic aerosols, Geophys. Res. Lett., Volume 20 (1993), pp. 955-958
[65] High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross section: Temperature and pressure effects, J. Geophys. Res., Volume 107 (2002), p. 4348 | DOI
[66] The visible absorption spectrum of NO3 measured by high-resolution Fourier transform spectroscopy, J. Geophys. Res., Volume 108 (2003), p. 4077 | DOI
Cited by Sources:
Comments - Policy