The space-based Orbiting Carbon Observatory (OCO) mission will achieve global measurements needed to distinguish spatial and temporal gradients in the CO2 column. Scheduled by NASA to launch in 2008, the instrument will obtain averaged dry air mole fraction with a precision of 1 part per million (0.3%) in order to quantify the variation of CO2 sources and sinks and to improve future climate forecasts. Retrievals of from ground-based measurements require even higher precisions to validate the satellite data and link them accurately and without bias to the World Meteorological Organization (WMO) standard for atmospheric CO2 observations. These retrievals will require CO2 spectroscopic parameters with unprecedented accuracy. Here we present the experimental and data analysis methods implemented in laboratory studies in order to achieve this challenging goal.
La mission spatiale Orbiting Carbon Observatory (OCO) fournira les mesures globales nécessaires pour étudier les gradients spatiaux et temporels des quantités de CO2 dans notre atmosphère. Avec une mise en orbite prévue par la NASA en 2008, cet instrument déterminera la fraction molaire moyenne avec une précision de une partie par million (1 ppm, 0.3%) afin de quantifier les variations des sources et puits de CO2 et d'améliorer les prévisions météorologiques à venir. Les déterminations de à partir du sol devront avoir une précision encore supérieure afin de valider les données satellites pour qu'elles satisfassent, sans biais, les standards de la World Meteorological Organization (WMO) pour ce qui concerne les observations du CO2 atmosphérique. Ces mesures par télédétection dans l'infrarouge proche nécessiteront de connaître les paramètres spectroscopiques avec une précision sans précédent. Cet article présente les méthodes expérimentales et d'analyse des données qui sont développées au laboratoire afin d'atteindre cet objectif.
Mots-clés : Dioxyde de carbone (CO2), Orbiting Carbon Observatory (OCO), Spectroscopie proche infrarouge
Charles E. Miller 1; Linda R. Brown 1; Robert A. Toth 1; D. Chris Benner 2; V. Malathy Devi 2
@article{CRPHYS_2005__6_8_876_0, author = {Charles E. Miller and Linda R. Brown and Robert A. Toth and D. Chris Benner and V. Malathy Devi}, title = {Spectroscopic challenges for high accuracy retrievals of atmospheric {CO\protect\textsubscript{2}} and the {Orbiting} {Carbon} {Observatory} {(OCO)} experiment}, journal = {Comptes Rendus. Physique}, pages = {876--887}, publisher = {Elsevier}, volume = {6}, number = {8}, year = {2005}, doi = {10.1016/j.crhy.2005.09.005}, language = {en}, }
TY - JOUR AU - Charles E. Miller AU - Linda R. Brown AU - Robert A. Toth AU - D. Chris Benner AU - V. Malathy Devi TI - Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment JO - Comptes Rendus. Physique PY - 2005 SP - 876 EP - 887 VL - 6 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2005.09.005 LA - en ID - CRPHYS_2005__6_8_876_0 ER -
%0 Journal Article %A Charles E. Miller %A Linda R. Brown %A Robert A. Toth %A D. Chris Benner %A V. Malathy Devi %T Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment %J Comptes Rendus. Physique %D 2005 %P 876-887 %V 6 %N 8 %I Elsevier %R 10.1016/j.crhy.2005.09.005 %G en %F CRPHYS_2005__6_8_876_0
Charles E. Miller; Linda R. Brown; Robert A. Toth; D. Chris Benner; V. Malathy Devi. Spectroscopic challenges for high accuracy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment. Comptes Rendus. Physique, Molecular spectroscopy and planetary atmospheres, Volume 6 (2005) no. 8, pp. 876-887. doi : 10.1016/j.crhy.2005.09.005. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2005.09.005/
[1] Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon-cycle, Nature, Volume 358 (1992), pp. 723-727
[2] Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (J.T. Houghton; Y. Ding; D.J. Griggs; M. Noguer; P.J. van der Linden; X. Dai; K. Maskell; C.A. Johnson, eds.), Cambridge Univ. Press, Cambridge, UK and New York, 2001 (881 pp)
[3] Climate modeling and diagnostics laboratory summary report No. 25 (1998–1999), Report No. 25, 2001 and GLOBALVIEW-CO2: Cooperative atmospheric integration project—carbon dioxide, NOAA CMDL, Boulder, CO, 2001 http://www/cmdl/noaa/gov/ccgg/globalview/co2
[4] Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model, Nature, Volume 408 (2000), pp. 184-187
[5] Positive feedback between future climate change and the carbon cycle, Geophys. Res. Lett., Volume 28 (2001), pp. 1543-1546
[6] The utility of remotely sensed CO2 concentration data in surface source inversions, Geophys. Res. Lett., Volume 28 (2001), pp. 175-178
[7] et al. The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., Volume 34 (2004), p. 700
[8] C.E. Miller et al., Precision requirements for space-based data, J. Geophys. Res., submitted for publication
[9] Annual and seasonal variations of atmospheric CO2, N2O and CO concentrations retrieved from NOAA/TOVS satellite observations, Geophys. Res. Lett., Volume 29 (2002) | DOI
[10] Retrieving profiles of atmospheric CO2 in clear sky and in the presence of thin cloud using spectroscopy from the near and thermal infrared: A preliminary case study, J. Geophys. Res., Volume 109 (2004) (D04316) | DOI
[11] Global observations of the carbon budget. 1. Expected satellite capabilities for emission spectroscopy in the EOS and NPOESS eras, J. Geophys. Res., Volume 106 (2001), p. 20,055-20,068
[12] Information content of infrared satellite sounding measurements with respect to CO2, J. Appl. Meteorol., Volume 43 (2004), pp. 373-378
[13] Spectral line shape considerations for limb temperature sounders, J. Geophys. Res., Volume 96 (1991), p. 20,859-20,868
[14] Comparison of atmospheric retrievals from ACE and HALOE, Geophys. Res. Lett., Volume 32 (2005) (L15S10) | DOI
[15] Absolute intensity measurements of the 12C16O2 laser bands near 10 μm, J. Quant. Spec. Rad. Transfer, Volume 76 (2003), pp. 393-410
[16] Multispectrum analysis of pressure broadening and pressure shift coefficients in the 12C16O2 and 13C16O2 laser bands, J. Quant. Spec. Rad. Transfer, Volume 67 (2003), pp. 411-434
[17] Spectroscopic observation of atmospheric trace gases over Kitt Peak: 1. Carbon dioxide and methane from 1979 to 1985, J. Geophys. Res., Volume 95 (1990), pp. 9823-9827
[18] Atmospheric CO2 retrieved from ground-based near IR spectra, Geophys. Res. Lett., Volume 29 (2002) | DOI
[19] Atmospheric CO2 monitoring from space, Appl. Opt., Volume 36 (1997), pp. 2701-2712
[20] High-resolution measurements of line intensity, broadening and shift of CO2 around 2 μm, Eur. Phys. J. D, Volume 6 (1999), pp. 327-332
[21] Collisional broadening and shift of lines in the band of CO2, J. Quant. Spec. Rad. Transfer, Volume 61 (1999), pp. 97-104
[22] The (2201–0000) band of CO2 at 6348 cm−1: linestrengths, broadening parameters, and pressure shifts, J. Mol. Spectrosc., Volume 203 (2000), pp. 16-27
[23] The HITRAN 2004 molecular spectroscopic database, J. Quant. Spec. Rad. Transfer, Volume 96 (2005), pp. 139-204
[24] Determination of line strengths by Fourier-transform spectroscopy, Appl. Opt., Volume 35 (1996), pp. 2971-2985
[25] The rovibrational intensities of five absorption bands of 12C16O2 between 5218 and 5349 cm−1, J. Quant. Spec. Rad. Transfer, Volume 67 (2003), pp. 417-436
[26] The rovibrational intensities of the pentad absorption bands of 12C16O2 between 7284 and 7921 cm−1, J. Mol. Spectrosc., Volume 175 (1996), pp. 104-111
[27] On the origin of the band structure observed in the collision-induced absorption bands of CO2, J. Mol. Spectrosc., Volume 218 (2003), pp. 260-261
[28] P.P. Tans, Personal communication, 2002
[29] Absolute frequency measurements of the 2–0 band of CO at 2.3 μm: calibration standard frequencies from high resolution color center laser spectroscopy, J. Mol. Spectrosc., Volume 99 (1983), pp. 357-368
[30] Accurate optical frequency atlas of the 1.5-μm bands of acetylene, J. Opt. Soc. Am. B—Opt. Phys., Volume 13 (1996), pp. 2708-2714
[31] The and the combination bands of 13C2H2. Linestrengths, broadening parameters, and pressure shifts, J. Mol. Spectrosc., Volume 209 (2001), pp. 216-227
[32] Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition, IEEE Trans. Instrum. Meas., Volume 48 (1999), pp. 563-566
[33] A multispectrum nonlinear least-squares fitting technique, J. Quant. Spec. Rad. Transfer, Volume 53 (1995), pp. 705-721
[34] Intensities and self-broadening coefficients of 12C16O2 lines in the laser band region, J. Mol. Spectrosc., Volume 152 (1992), pp. 328-341
[35] Self-broadened 12C16O line shapes in the band, J. Mol. Spectrosc., Volume 222 (2003), pp. 220-239
[36] Absolute line intensities, vibrational transition moment, and self-broadening coefficients for the 3–0 band of 12C16O, J. Mol. Struct., Volume 517 (2000), pp. 427-434
[37] A multispectrum fitting procedure to deduce molecular line parameters: application to the 3–0 band of 12C16O, Eur. Phys. J. D, Volume 14 (2001), pp. 55-69
[38] The overtone band of CO: precise linestrengths and broadening parameters, J. Mol. Spectrosc., Volume 193 (1999), pp. 354-362
[39] Absolute rovibrational intensities and self-broadening and self-shift coefficients for the band of 12C16O, J. Mol. Spectrosc., Volume 210 (2001), pp. 119-126
[40] Determination of self- and H2-broadening and shift coefficients in the 2–0 band of 12C16O using a multispectrum fitting procedure, J. Quant. Spec. Rad. Transfer, Volume 75 (2002), pp. 455-471
[41] New laboratory data on the spectral line parameters in the 1–0 and 2–0 bands of 12C16O relevant to atmospheric remote sensing, J. Quant. Spec. Rad. Transfer, Volume 75 (2002), pp. 63-92
[42] Band parameters of N2O and CO2 determined by whole band analysis, Proc. Soc. Photo-Opt. Instr. Eng., Volume 289 (1981), pp. 99-201
[43] Line parameters determined by spectral curve fitting, J. Opt. Soc. Am., Volume 67 (1977), p. 1442
[44] Shape of the 5 mm oxygen band in the atmosphere, IEEE Trans. Ant. Prop., Volume AP-23 (1975), pp. 498-506
[45] Collisional line mixing (K.N. Rao; A. Weber, eds.), Spectroscopy of the Earth's Atmosphere and Interstellar Medium, Academic Press, Boston, MA, 1992, pp. 261-337 (Chapter 2)
[46] Speed-dependent pressure broadening and shift in the soft collision approximation, J. Quant. Spec. Rad. Transfer, Volume 57 (1997), pp. 411-423
[47] Speed-dependent line mixing profiles, J. Quant. Spec. Rad. Transfer, Volume 67 (2000), pp. 375-393
[48] A generalized speed-dependent line profile combining soft and hard partially correlated Dicke-narrowing collisions, J. Quant. Spec. Rad. Transfer, Volume 68 (2001), pp. 257-271
[49] Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. I: Model and laboratory measurements, J. Quant. Spec. Rad. Transfer, Volume 88 (2004), pp. 483-498
[50] Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. II: Atmospheric solar occultation spectra, J. Quant. Spec. Rad. Transfer, Volume 90 (2005), pp. 43-59
[51] Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. III: Atmospheric emission spectra, J. Quant. Spec. Rad. Transfer, Volume 90 (2005), pp. 61-76
[52] Spectra calculations in central and wing regions of CO2 IR bands. IV: Software and database for the computation of atmospheric spectra, J. Quant. Spec. Rad. Transfer, Volume 95 (2005), pp. 469-481
Cited by Sources:
Comments - Policy