[Mappings stochastiques inverses pour les distributions de Tsallis]
Nous définissons des relations bijectives entre les distributions Gaussiennes et les distributions de Tsallis ; à un vecteur aléatoire X suivant une distribution de Tsallis, il est possible d'associer un vecteur aléatoire Gaussien N de la façon suivante :
We devise mappings between Gaussian distributions and power-law distributions, nowadays also called Tsallis distributions. To a given Tsallis distributed vector X, one can associate a Gaussian distributed vector N in the fashion
Mots-clés : Suprastatistiques, Application stochastique, Entropie de Tsallis
Christophe Vignat 1 ; A. Plastino 2, 3
@article{CRPHYS_2006__7_3-4_442_0, author = {Christophe Vignat and A. Plastino}, title = {Stochastic invertible mappings for {Tsallis} distributions}, journal = {Comptes Rendus. Physique}, pages = {442--448}, publisher = {Elsevier}, volume = {7}, number = {3-4}, year = {2006}, doi = {10.1016/j.crhy.2006.01.012}, language = {en}, }
Christophe Vignat; A. Plastino. Stochastic invertible mappings for Tsallis distributions. Comptes Rendus. Physique, Statistical mechanics of non-extensive systems, Volume 7 (2006) no. 3-4, pp. 442-448. doi : 10.1016/j.crhy.2006.01.012. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.012/
[1] Physica A, 322 (2003), p. 267
[2] Elementary Principles in Statistical Mechanics, Collected Works, Yale Univ. Press, New Haven, 1948
[3] Statistical and Thermal Physics, Statistical Mechanics, McGraw-Hill, New York, 1965
[4] Foundations of Physics, Dover, New York, 1957
[5] Phys. Lett. A, Nonextensive Entropy: Interdisciplinary Applications, 36 (2005), p. 140 (Special issue and references therein)
[6] Physica A, 305 (2002) no. Special (and references therein)
[7] Phys. Lett. A, 193 (1994), p. 251
[8] Lectures on Phase Transitions and the Renormalization Group, Addison–Wesley, New York, 1992
[9] Braz. J. Phys., 29 (1999), p. 1
[10] Phys. Lett. A, 287 (2001), p. 240
[11] Phys. Rev. E, 63 (2001), p. 035503
[12] Physica A, 286 (2000), p. 156
[13] Phys. Lett. A, 310 (2003), p. 372
[14] J. Math. Phys., 37 (1996), p. 1776
[15] Nonextensive statistical mechanics and thermodynamics. Historical background and present status (S. Abe; Y. Okamoto, eds.), Nonextensive Statistical Mechanics and Its Applications, Lecture Notes in Physics, Springer-Verlag, Berlin, 2000
[16] Physica A, 295 (2001), p. 224
[17] J. Phys. A, 35 (2002), p. 7003
[18] Phys. Lett. A, 281 (2001), p. 126
[19] Physica A, 269 (1999), p. 403
[20] Geometric origin of probabilistic distributions in statistical mechanics | arXiv
[21] A. Jeffrey (Ed.), Gradshteyn and Ryzhik's Table of Integrals, Series, and Products, fifth ed., January 1994
[22] F. Barthe, M. Csornyei, A. Naor, A note on simultaneous polar and Cartesian decomposition, in: Geometric Aspects of Functional Analysis, in: Springer Lecture Notes in Math., vol. 1807, pp. 1–19
- A generalized thermodynamics for power-law statistics, Physica A: Statistical Mechanics and its Applications, Volume 386 (2007) no. 1, p. 135 | DOI:10.1016/j.physa.2007.07.066
Cité par 1 document. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier