[Besoins en métrologie avancée pour la lithographie nanoélectronique]
Depuis plus de quatre décennies l'industrie du semiconducteur a mis à profit les améliorations de productivité obtenues par le biais d'une réduction agressive des dimensions de motifs. Alors qu'un effort énorme a été dépensé pour développer les outils de lithographie optique afin d'imprimer des traits de plus en plus fins, des avancées significatives ont été aussi nécessaires pour mesurer les motifs imprimés. Dans cet article nous discuterons certaines techniques de pointe de métrologie utilisées aujourd'hui pour mesurer les dimensions critiques de traits imprimés à savoir la microscopie électronique à balayage et la microscopie à force atomique. Nous décrirons le travail mené au National Institute of Standards and Technology pour faire progresser ces instruments, ainsi que le travail exploratoire sur deux techniques nouvelles prometteuses que sont la microscopie en champ diffracté et la diffraction de rayons X aux petits angles. La métrologie et le contrôle de la rugosité de trait, des dimensions critiques et du recouvrement sont deux des besoins les plus importants de l'industrie auxquels fait référence la feuille de route internationale de la technologie des semiconducteurs (2005).
The semiconductor industry has exploited productivity improvements through aggressive feature size reduction for over four decades. While enormous effort has been expended in developing the optical lithography tools to print ever finer features, significant advances have also been required to measure the printed features. In this article we will discuss the current state of the art in the metrology for measuring critical dimensions of printed features for scanning electron microscopy and atomic force microscopy, and describe work at the National Institute of Standards and Technology advancing these tools as well as exploratory work on two new promising techniques, scatterfield microscopy and small angle X-ray scattering. Line width roughness critical dimension and overlay metrology and control are two of the most significant industry needs mentioned in the International Technology Roadmap for Semiconductors (2005).
Mot clés : CD-SEM, CD-AFM, Microscopie en champ diffracté, CD-SAXS
Stephen Knight 1 ; Ronald Dixson 1 ; Ronald L. Jones 1 ; Eric K. Lin 1 ; Ndubuisi G. Orji 1 ; R. Silver 1 ; John S. Villarrubia 1 ; András E. Vladár 1 ; Wen-li Wu 1
@article{CRPHYS_2006__7_8_931_0, author = {Stephen Knight and Ronald Dixson and Ronald L. Jones and Eric K. Lin and Ndubuisi G. Orji and R. Silver and John S. Villarrubia and Andr\'as E. Vlad\'ar and Wen-li Wu}, title = {Advanced metrology needs for nanoelectronics lithography}, journal = {Comptes Rendus. Physique}, pages = {931--941}, publisher = {Elsevier}, volume = {7}, number = {8}, year = {2006}, doi = {10.1016/j.crhy.2006.10.004}, language = {en}, }
TY - JOUR AU - Stephen Knight AU - Ronald Dixson AU - Ronald L. Jones AU - Eric K. Lin AU - Ndubuisi G. Orji AU - R. Silver AU - John S. Villarrubia AU - András E. Vladár AU - Wen-li Wu TI - Advanced metrology needs for nanoelectronics lithography JO - Comptes Rendus. Physique PY - 2006 SP - 931 EP - 941 VL - 7 IS - 8 PB - Elsevier DO - 10.1016/j.crhy.2006.10.004 LA - en ID - CRPHYS_2006__7_8_931_0 ER -
%0 Journal Article %A Stephen Knight %A Ronald Dixson %A Ronald L. Jones %A Eric K. Lin %A Ndubuisi G. Orji %A R. Silver %A John S. Villarrubia %A András E. Vladár %A Wen-li Wu %T Advanced metrology needs for nanoelectronics lithography %J Comptes Rendus. Physique %D 2006 %P 931-941 %V 7 %N 8 %I Elsevier %R 10.1016/j.crhy.2006.10.004 %G en %F CRPHYS_2006__7_8_931_0
Stephen Knight; Ronald Dixson; Ronald L. Jones; Eric K. Lin; Ndubuisi G. Orji; R. Silver; John S. Villarrubia; András E. Vladár; Wen-li Wu. Advanced metrology needs for nanoelectronics lithography. Comptes Rendus. Physique, Volume 7 (2006) no. 8, pp. 931-941. doi : 10.1016/j.crhy.2006.10.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.004/
[1] http://public.itrs.net/ (International Technology Roadmap for Semiconductors. 2005 edition available online at)
[2] Issues in line edge and linewidth roughness metrology, 2005 (D.G. Seiler; A.C. Diebold; R. McDonald; C.R. Ayre; R.P. Khosla; S. Zollner; E.M. Secula, eds.) (AIP Conference Proceedings), Volume vol. 788, AIP Press, New York (2005), p. 386
[3] Scanning electron microscope analog of scatterometry, Proc. SPIE, Volume 4689 (2002), pp. 304-312
[4] Nanotip electron gun for the scanning electron microscope, Scanning, Volume 28 (2005) no. 3, p. 133
[5] Active monitoring and control of electron beam induced contamination, Proc. SPIE, Volume 4344 (2001), p. 835
[6] A simulation study of repeatability and bias in the CD-SEM, Proc. SPIE, Volume 5038 (2003), pp. 138-149
[7] Secondary electron imaging of nonconductors with nanometer resolution, Appl. Phys. Lett., Volume 88 (2006), p. 023105
[8] Method for imaging sidewalls by atomic force microscopy, Appl. Phys. Lett., Volume 64 (1994), pp. 2498-2500
[9] Reducing measurement uncertainty drives the use of multiple technologies for supporting metrology, Proc. SPIE, Volume 5375 (2004), pp. 133-150
[10] Improving SEM linewidth metrology by two-dimensional scanning force microscopy, Proc. SPIE, Volume 2725 (1996), pp. 494-503
[11] Sub-0.35-micron critical dimension metrology using atomic force microscopy, Proc. SPIE, Volume 2725 (1996), pp. 540-554
[12] AFM: A valid reference tool?, Proc. SPIE, Volume 3332 (1998), pp. 2-9
[13] Evaluation of atomic force microscopy: Comparison with electrical CD metrology and low voltage scanning electron microscopy, Proc. SPIE, Volume 3677 (1999), pp. 43-52
[14] Photomask edge roughness characterization using an atomic force microscope, Proc. SPIE, Volume 3332 (1998), pp. 433-440
[15] Quantitative line edge roughness characterization for sub-0.25 um DUV lithography, Proc. SPIE, Volume 3677 (1999), pp. 35-42
[16] Progress on implementation of a CD-AFM based reference measurement system, Proc. SPIE, Volume 6152 (2006) (61520O-1-12)
[17] CD-AFM reference metrology at NIST and SEMATECH, Proc. SPIE, Volume 5752 (2005), pp. 324-336
[18] Reference metrology using a next generation CD-AFM, Proc. SPIE, Volume 5375 (2004), pp. 633-646
[19] Implementation of a reference measurement system using CD-AFM, Proc. SPIE, Volume 5038 (2003), pp. 150-165
[20] Toward traceability for at line AFM dimensional metrology, Proc. SPIE, Volume 4689 (2002), pp. 313-335
[21] Traceable calibration of critical-dimension atomic force microscope linewidth measurements with nanometer uncertainty, J. Vac. Sci. Technol. B, Volume 23 (2005), pp. 3028-3032
[22] Critical dimension reference features with sub-five nanometer uncertainty, Proc. SPIE, Volume 5752 (2005), pp. 288-303
[23] Critical dimension calibration standards for ULSI metrology, in characterization and metrology for ULSI technology, AIP Conf. Proc., Volume 683 (2003), pp. 421-428
[24] CD reference materials for sub-tenth micrometer applications, Proc. SPIE, Volume 4689 (2002), pp. 116-127
[25] Intercomparison of SEM, AFM, and electrical linewidths, Proc. SPIE, Volume 3677 (1999), pp. 440-587
[26] R. Attota, R.M. Silver, M. Bishop, E. Marx, J. Jun, M. Stocker, M. Davidson, R. Larrabee, Evaluation of new in-chip and arrayed line overlay target designs, in: Proc. SPIE Microlithography, 2004
[27] Target noise in overlay metrology, Proc. SPIE, Volume 5375 (2004), pp. 403-412
[28] High-resolution optical metrology, Proc. SPIE, Volume 5752 (2005), p. 67
[29] High-resolution optical overlay metrology, Proc. SPIE, Volume 5375 (2004), p. 78
[30] Application of through-focus focus-metric analysis in high resolution optical microscopy, Proc. SPIE, Volume 5752 (2005)
[31] Comparison of measured optical image profiles of silicon lines with two different theoretical models, Proc. SPIE, Volume 4689 (2002), p. 00
[32] J. Appl. Phys., 96 (2004), p. 1983
[33] Appl. Phys. Lett., 83 (2003), p. 4059
Cité par Sources :
Commentaires - Politique