[Rôle de la structuration lors de la nucléation d'îlots sur les surfaces des semi-conducteurs]
Les boîtes quantiques (BQ) obtenues par croissance sur les surfaces des semi-conducteurs constituent l'objectif prioritaire des chercheurs en vue de développer de nouvelles applications technologiques dans les prochaines années. Les nouvelles perspectives dans la technologie des nanodispositifs reposent sur un positionnement précis du site de nucléation des BQs et sur le contrôle de leur forme et de leur taille. Dans le présent article, nous passerons en revue quelques études récentes concernant le contrôle de la nucléation sur les surfaces des semi-conducteurs. Après un bref rappel de la théorie de la nucléation « libre » sur les surfaces et sur le rôle des marches et des défauts, on explore quelques voies nouvelles pour former des structurations ordonnées : d'une part une structuration naturelle induite par des instabilités de surface (par exemple mise en paquet des marches ou formation de méandres sur les marches), d'autre part une structuration in situ du substrat par microscopie à effet tunnel (STM), et une structuration à haute résolution par faisceaux d'ions focalisés (FIB). La croissance des couches épitaxiales de semi-conducteurs (Ge/Si(100) et InAs/GaAs(100)) sur ces surfaces à morphologie structurée a été étudiée par STM ou Microscopie à Force Atomique (AFM), révélant le mode d'agrégation des premiers atomes et identifiant le site exact de la nucléation. Par l'emploi de surfactants sur substrats désorientés, on a induit une taille de BQs, afin qu'elles s'adaptent à la longueur d'onde typique de la structuration. Les images STM, obtenues en temps réel, ont permis d'identifier le mécanisme de formation des agrégats de Ge sur Si(100) présentant une structuration morphologique spécifique, et de suivre la transition des îlots de la forme pré-pyramidale à la forme pyramidale. Le contrôle du site de nucléation des îlots de Ge sur les couches de SiO2 a été obtenue par FIB, permettant d'obtenir des densités d'îlots de .
Quantum dots (QDs) grown on semiconductors surfaces are actually the main researchers' interest for applications in the forthcoming nanotechnology era. New frontiers in nanodevice technology rely on the precise positioning of the nucleation site and on controlling the shape and size of the dots. In this article we will review some recent studies regarding the control of the nucleation process on semiconductor surfaces. A few approaches to form ordered patterns on surfaces are described: natural patterning induced by surface instabilities (as step bunching or step meandering), in situ substrate patterning by Scanning Tunneling Microscopy (STM), high resolution patterning by Focused Ion Beam (FIB). Growth of epitaxial layers of semiconductors (Ge/Si(100) and InAs/GaAs(100)) on patterned surfaces has been studied by STM or Atomic Force Microscopy (AFM) unveiling the way in which the first atoms start to aggregate and identifying their exact nucleation site. Control of the dot size to match the patterning typical wavelength has been achieved by using surfactants on misoriented substrates. STM images acquired in real time allows one to identify the mechanism of Ge cluster formation on patterned Si(100), and to follow the island transition from pre-pyramid to pyramid. Nucleation of ordered Ge dots on SiO2 substrates has been obtained thanks to FIB tight patterning, achieving island densities of .
Mot clés : Boîtes quantiques, Contrôle de la nucléation, Surfaces des semi-conducteurs
Nunzio Motta 1 ; Pierre D. Szkutnik 2 ; Massimo Tomellini 3 ; Anna Sgarlata 4 ; Massimo Fanfoni 4 ; Fulvia Patella 4 ; Adalberto Balzarotti 4
@article{CRPHYS_2006__7_9-10_1046_0, author = {Nunzio Motta and Pierre D. Szkutnik and Massimo Tomellini and Anna Sgarlata and Massimo Fanfoni and Fulvia Patella and Adalberto Balzarotti}, title = {Role of patterning in islands nucleation on semiconductor surfaces}, journal = {Comptes Rendus. Physique}, pages = {1046--1072}, publisher = {Elsevier}, volume = {7}, number = {9-10}, year = {2006}, doi = {10.1016/j.crhy.2006.10.013}, language = {en}, }
TY - JOUR AU - Nunzio Motta AU - Pierre D. Szkutnik AU - Massimo Tomellini AU - Anna Sgarlata AU - Massimo Fanfoni AU - Fulvia Patella AU - Adalberto Balzarotti TI - Role of patterning in islands nucleation on semiconductor surfaces JO - Comptes Rendus. Physique PY - 2006 SP - 1046 EP - 1072 VL - 7 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2006.10.013 LA - en ID - CRPHYS_2006__7_9-10_1046_0 ER -
%0 Journal Article %A Nunzio Motta %A Pierre D. Szkutnik %A Massimo Tomellini %A Anna Sgarlata %A Massimo Fanfoni %A Fulvia Patella %A Adalberto Balzarotti %T Role of patterning in islands nucleation on semiconductor surfaces %J Comptes Rendus. Physique %D 2006 %P 1046-1072 %V 7 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2006.10.013 %G en %F CRPHYS_2006__7_9-10_1046_0
Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; Anna Sgarlata; Massimo Fanfoni; Fulvia Patella; Adalberto Balzarotti. Role of patterning in islands nucleation on semiconductor surfaces. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1046-1072. doi : 10.1016/j.crhy.2006.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.013/
[1] Journal of Physics—Condensed Matter, 14 (2002) no. 35, p. 8353
[2] et al. Applied Physics Letters, 82 (2003) no. 20, p. 3517
[3] et al. Physical Review Letters, 89 (2002) no. 19
[4] Journal of Physics—Condensed Matter, 14 (2002) no. 35, p. 8283
[5] Physics Reports, 365 (2002), p. 335
[6] et al. Journal of Applied Physics, 85 (1999) no. 2, p. 1159
[7] Surface Science Reports, 43 (2001) no. 5–8, p. 127
[8] Applied Physics Letters, 72 (1998) no. 7, p. 783
[9] Applied Physics Letters, 73 (1998) no. 12, p. 1712
[10] et al. Physical Review Letters, 85 (2004) no. 23, p. 5673
[11] et al. Physica E—Low-Dimensional Systems & Nanostructures, 9 (2001) no. 1, p. 164
[12] et al. Physica E—Low-Dimensional Systems & Nanostructures, 17 (2003) no. 1–4, p. 533
[13] et al. Physica E—Low-Dimensional Systems & Nanostructures, 25 (2004) no. 2–3, p. 280
[14] et al. Thin Solid Films, 508 (2006) no. 1–2, p. 195
[15] et al. Physical Review B, 73 (2006) no. 20
[16] et al. Applied Physics Letters, 88 (2006) no. 16
[17] Comptes Rendus Physique, 6 (2005) no. 1, p. 23
[18] et al. Physical Review Letters, 65 (1990) no. 8, p. 1020
[19] et al. Physical Review Letters, 85 (2000) no. 17, p. 3672
[20] et al. Physical Review B, 78 (1997) no. 20, p. 3959
[21] et al. Physical Review Letters, 49 (1982) no. 1, p. 57
[22] Crystal Growth for Beginners, World Scientific, New York, 1995
[23] Journal of Chemical Physics, 37 (1962), p. 2182
[24] Thin Solid Films, 2 (1968), p. 497
[25] Thin Solid Films, 3 (1969), p. 59
[26] Thin Solid Films, 8 (1971), p. 41
[27] Advances in Physics, 19 (1970), p. 409
[28] Philosophical Magazine, 17 (1973), p. 697
[29] Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 321 (1971), p. 53
[30] Applied Physics Letters, 78 (2001), p. 3424
[31] Physical Review Letters, 86 (2001), p. 3092
[32] Physical Review B, 66 (2002), p. 235410
[33] et al. Nanotechnology, 17 (2006) no. 17, p. 4451
[34] Applied Physics Letters, 72 (1998) no. 13, p. 1617
[35] et al. Physical Review B, 69 (2004) no. 20
[36] et al. Applied Physics Letters, 83 (2003) no. 19, p. 4002
[37] Surface Science Letters, 393 (1997), p. L99
[38] Thin Solid Films, 369 (2000) no. 1–2, p. 88
[39] et al. Surface Science, 213 (1989), p. 157
[40] Surface Science Reports, 43 (2001), p. 45
[41] Surface Science Reports, 34 (1999), p. 171
[42] Surface Science, 440 (1999) no. 3, p. 407
[43] et al. Physical Review Letters, 88 (2002) no. 9
[44] Physical Review B, 62 (2000) no. 12, p. 8323
[45] et al. Surface Science, 248 (1991) no. 3, p. 321
[46] et al. Progress in Crystal Growth and Characterization of Materials, 33 (1996) no. 4, p. 423
[47] Physical Review Letters, 84 (2000) no. 2, p. 330
[48] et al. Applied Physics Letters, 76 (2000) no. 6, p. 682
[49] Applied Surface Science, 195 (2002) no. 1–4, p. 16
[50] et al. Materials Science and Engineering B—Solid State Materials for Advanced Technology, 69 (2000), p. 324
[51] et al. Materials Science & Engineering C, 23 (2003) no. 6–8, p. 1053
[52] Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 243 (1951), p. 299
[53] Journal of Applied Physics, 37 (1966), p. 3682
[54] Physical Review B, 41 (1990), p. 5500
[55] Physical Review Letters, 72 (1994), p. 1678
[56] Physical Review B, 54 (1996), p. 14511
[57] et al. Journal of Physics—Condensed Matter, 16 (2004), p. S1503
[58] Growth and Perfection of Crystals (B. Roberts; R. Doremus; D. Turnbull, eds.), Wiley, New York, 1958, p. 511
[59] Physical Review B, 49 (1994), p. 5554
[60] et al. Recent Research Developments in Vacuum Science & Technology, 78 (2001), p. 320
[61] Physical Review B, 41 (1990) no. 9, p. 5500
[62] et al. Journal of Vacuum Science & Technology B, 16 (1998), p. 1582
[63] Physical Review B, 43 (1991) no. 11, p. 9377
[64] Surface Science, 445 (2000), p. L23
[65] et al. Physical Review B, 64 (2001), p. 41301
[66] et al. Surface Science, 520 (2002) no. 3, p. 193
[67] Applied Physics Letters, 86 (2005) no. 13, p. 131919
[68] Applied Physics (a)—Materials Science & Processing, 67 (1998) no. 6, p. 675
[69] et al. Surface Science, 531 (2003) no. 3, p. 231
[70] et al. Applied Surface Science, 126 (1998) no. 3–4, p. 213
[71] et al. Applied Physics Letters, 85 (2004), p. 1238
[72] et al. Applied Physics Letters, 83 (2003) no. 23, p. 4833
[73] P.D. Szkutnik, A. Sgarlata, A. Balzarotti, et al., Physical Review B (2006), in press
[74] Physical Review Letters, 84 (2000) no. 20, p. 4645
[75] et al. Physical Review B, 55 (1997) no. 12, p. R7319
[76] et al. Journal of Korean Physical Society, 33 (1998)
[77] Physical Review Letters, 79 (1997) no. 23, p. 4621
[78] et al. Physical Review B, 61 (2000) no. 7, p. 2329
[79] Applied Physics Letters, 73 (1998) no. 5, p. 620
[80] et al. Thin Solid Films, 336 (1998) no. 1–2, p. 256
[81] et al. Thin Solid Films, 321 (1998) no. 1–2, p. 55
[82] et al. Materials Science and Engineering B—Solid State Materials for Advanced Technology, 101 (2003) no. 1–3, p. 95
[83] Materials Science and Engineering B—Solid State Materials for Advanced Technology, 89 (2002) no. 1–3, p. 205
[84] Materials Science and Engineering B—Solid State Materials for Advanced Technology, 101 (2003) no. 1–3, p. 181
[85] Applied Physics Letters, 71 (1997) no. 9, p. 1201
[86] Applied Physics Letters, 82 (2003) no. 20, p. 3454
[87] et al. Physical Review Letters, 88 (2002) no. 25
[88] et al. Physical Review Letters, 91 (2003) no. 17
[89] Physical Review Letters, 84 (2000) no. 20, p. 4637
[90] et al. Physical Review Letters, 75 (1995), p. 2730
[91] Nanotechnology, 14 (2003), p. 264
[92] et al. Physical Review B, 65 (2002) no. 12 (125317)
[93] J. Gierak, E. Cambril, M. Schneider, et al., Presented at the 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, Marco Island, Florida (USA), 1999 (unpublished)
[94] et al. Journal of Physics—Condensed Matter, 16 (2004) no. 17, p. S1503
[95] A. Sgarlata, A. Balzarotti, I. Berbezier, et al., in: IEEE Proceedings of ICONN 2006 Conference, Brisbane, Australia, 2006, in press
[96] et al. Applied Physics Letters, 82 (2003) no. 7, p. 1093
[97] et al. Journal of Applied Physics, 93 (2003), p. 6256
[98] et al. Physical Review Letters, 96 (2006) no. 9
[99] et al. Applied Physics Letters, 85 (2004) no. 26, p. 6401
[100] Acta Metallurgica, 37 (1989), p. 621
[101] et al. Journal of Physics: Conference Series, 10 (2005), p. 73
[102] et al. Applied Physics Letters, 78 (2001) no. 17, p. 2563
[103] Physical Review B, 62 (2000) no. 3, p. 1540
[104] et al. Applied Physics Letters, 77 (2000) no. 22, p. 3541
[105] Applied Physics Letters, 80 (2002) no. 8, p. 1432
[106] et al. Applied Physics Letters, 83 (2003) no. 7, p. 1444
[107] Physical Review B, 73 (2006) no. 7, p. 075323
[108] Surface Science, 515 (2002) no. 2–3, p. L493
[109] P.D. Szkutnik, A. Sgarlata, E. Placidi, et al., Surface Science (2006), in press
Cité par Sources :
Commentaires - Politique