[Croissance dʼun film épitaxié contraint sur un substrat patterné]
Nous étudions lʼinfluence de la cinétique de croissance sur lʼinstabilité dʼAsaro–Tiller–Grinfelʼd qui se développe sur un film mince sur un substrat structuré. Nous utilisons un modèle continu qui est résolu au premier ordre en la pente de la surface. Les interactions de mouillage ainsi que le champ élastique induit par lʼinterface film/substrat introduisent une dépendance explicite dans lʼépaisseur du film. En conséquence, la symétrie par translation dans la direction de croissance est brisée et le flux de déposition nʼest pas un paramètre trivial de lʼinstabilité. Comme dans le cas du recuit, nous trouvons que lʼinstabilité peut évoluer dʼune configuration en phase vers une configuration en opposition de phase avec le substrat, en fonction du temps de déposition et de lʼépaisseur du film. Nous comparons lʼévolution de lʼinstabilité pour différents flux de croissance. Le diagramme des phases cinétique obtenu dans le cas du recuit rend aussi compte de lʼévolution du film lors de la croissance dans ses conditions courantes.
We study the influence of the growth kinetics on the Asaro–Tiller–Grinfelʼd instability of a thin film deposited on a patterned substrate. We use a continuum model that we solve at first order in the surface slope. Both wetting interactions and elastic fields induced by the film/substrate interface introduce an explicit dependence on the film thickness. As a consequence, the translational symmetry in the growth direction is broken and the deposition flux cannot be trivially accounted for. Similarly to the evolution during annealing, the instability can skip during growth from an in-phase to an out-of-phase geometry depending on the growth duration and film thickness. We compare the evolution of the instability using different deposition fluxes. We find that the kinetic phase diagram found in the annealing case also explains the evolution during growth in usual growth conditions.
Mot clés : Film épitaxié contraint, Instabilité dʼAsaro–Tiller–Grinfelʼd, Structuration
Xianbin Xu 1 ; Jean-Noël Aqua 1 ; Thomas Frisch 2
@article{CRPHYS_2013__14_2-3_199_0, author = {Xianbin Xu and Jean-No\"el Aqua and Thomas Frisch}, title = {Growth of a strained epitaxial film on a patterned substrate}, journal = {Comptes Rendus. Physique}, pages = {199--207}, publisher = {Elsevier}, volume = {14}, number = {2-3}, year = {2013}, doi = {10.1016/j.crhy.2012.11.006}, language = {en}, }
Xianbin Xu; Jean-Noël Aqua; Thomas Frisch. Growth of a strained epitaxial film on a patterned substrate. Comptes Rendus. Physique, Volume 14 (2013) no. 2-3, pp. 199-207. doi : 10.1016/j.crhy.2012.11.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.11.006/
[1] Fundamental processes in Si/Si and Ge/Si epitaxy studied by scanning tunneling microscopy during growth, Surf. Sci. Rep., Volume 43 (2001), p. 127
[2] Structural properties of self-organized semiconductor nanostructures, Rev. Mod. Phys., Volume 76 (2004), p. 725
[3] SiGe nanostructures, Surf. Sci. Rep., Volume 64 (2009), p. 47
[4] Surface migration induced self-aligned InAs islands grown by molecular beam epitaxy, Appl. Phys. Lett., Volume 66 (1995), p. 1620
[5] Alignment of InP Stranski–Krastanow dots by growth on patterned GaAs/GaInP surfaces, Appl. Phys. Lett., Volume 68 (1996), p. 1684
[6] Site control of self-organized InAs dots on GaAs substrates by in situ electron-beam lithography and molecular-beam epitaxy, Appl. Phys. Lett., Volume 73 (1998), p. 1712
[7] Stress-engineered spatially selective self-assembly of strained InAs quantum dots on nonplanar patterned GaAs(001) substrates, Appl. Phys. Lett., Volume 72 (1998), p. 220
[8] Selective epitaxial growth of dot structures on patterned Si substrates by gas source molecular beam epitaxy, Semicond. Sci. Technol., Volume 14 (1999), p. 257
[9] Early stage of Ge growth on Si(001) vicinal surfaces with an 8° miscut along [110], Phys. Rev. B, Volume 75 (2007), p. 033305
[10] Lithographic positioning of self-assembled Ge islands on Si(001), Appl. Phys. Lett., Volume 71 (1997), p. 1201
[11] Controlled arrangement of self-organized Ge islands on patterned Si(001) substrates, Appl. Phys. Lett., Volume 75 (1999), p. 2752
[12] Two-dimensional periodic alignment of self-assembled Ge islands on patterned Si(001) surfaces, Appl. Phys. Lett., Volume 80 (2002), p. 497
[13] Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy, Phys. Rev. Lett., Volume 92 (2004), p. 025502
[14] Delayed plastic relaxation on patterned Si substrates: Coherent SiGe pyramids with dominant {111} facets, Phys. Rev. Lett., Volume 98 (2007), p. 176102
[15] Self-assembling of Ge on finite Si(001) areas comparable with the island size, Appl. Phys. Lett., Volume 82 (2003), p. 3517
[16] Ge island formation on stripe-patterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 445
[17] Two-dimensional periodic positioning of self-assembled Ge islands on prepatterned Si(001) substrates, Appl. Phys. Lett., Volume 82 (2003), p. 4779
[18] Shape transitions and island nucleation for Si/Ge molecular beam epitaxy on stripe-patterned Si(001) substrate, Phys. Rev. B, Volume 80 (2009), p. 125329
[19] Self-assembly and ordering mechanisms of Ge islands on prepatterned Si(001), Phys. Rev. B, Volume 77 (2008), p. 075311
[20] Enhanced growth instability of strained film on wavy substrate, J. Appl. Phys., Volume 104 (2008), p. 054301
[21] Theory of directed nucleation of strained islands on patterned substrates, Phys. Rev. Lett., Volume 101 (2008), p. 216102
[22] Nucleationless three-dimensional island formation in low-misfit heteroepitaxy, Phys. Rev. Lett., Volume 84 (2000), p. 4637
[23] Interface morphology development during stress-corrosion cracking: Part 1. Via surface diffusion, Metall. Trans., Volume 3 (1972), p. 1789
[24] Instability of the separation boundary between a nonhydrostatically stressed elastic body and a melt, Sov. Phys. Dokl., Volume 31 (1986), p. 831
[25] Growth kinetics in a strained crystal film on a wavy patterned substrate, J. Phys.: Condens. Matter, Volume 24 (2012), p. 045002
[26] Towards quantitative understanding of formation and stability of Ge hut islands on Si(001), Phys. Rev. Lett., Volume 94 (2005), p. 176103
[27] Nonlinear evolution of a morphological instability in a strained epitaxial film, Phys. Rev. B, Volume 76 (2007), p. 165319
[28] Influence of surface energy anisotropy on the dynamics of quantum dot growth, Phys. Rev. B, Volume 82 (2010), p. 085322
[29] Ordering of strained islands during surface growth, Phys. Rev. E, Volume 81 (2010), p. 021605
Cité par Sources :
Commentaires - Politique