Comptes Rendus
Role of patterning in islands nucleation on semiconductor surfaces
[Rôle de la structuration lors de la nucléation d'îlots sur les surfaces des semi-conducteurs]
Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1046-1072.

Les boîtes quantiques (BQ) obtenues par croissance sur les surfaces des semi-conducteurs constituent l'objectif prioritaire des chercheurs en vue de développer de nouvelles applications technologiques dans les prochaines années. Les nouvelles perspectives dans la technologie des nanodispositifs reposent sur un positionnement précis du site de nucléation des BQs et sur le contrôle de leur forme et de leur taille. Dans le présent article, nous passerons en revue quelques études récentes concernant le contrôle de la nucléation sur les surfaces des semi-conducteurs. Après un bref rappel de la théorie de la nucléation « libre » sur les surfaces et sur le rôle des marches et des défauts, on explore quelques voies nouvelles pour former des structurations ordonnées : d'une part une structuration naturelle induite par des instabilités de surface (par exemple mise en paquet des marches ou formation de méandres sur les marches), d'autre part une structuration in situ du substrat par microscopie à effet tunnel (STM), et une structuration à haute résolution par faisceaux d'ions focalisés (FIB). La croissance des couches épitaxiales de semi-conducteurs (Ge/Si(100) et InAs/GaAs(100)) sur ces surfaces à morphologie structurée a été étudiée par STM ou Microscopie à Force Atomique (AFM), révélant le mode d'agrégation des premiers atomes et identifiant le site exact de la nucléation. Par l'emploi de surfactants sur substrats désorientés, on a induit une taille de BQs, afin qu'elles s'adaptent à la longueur d'onde typique de la structuration. Les images STM, obtenues en temps réel, ont permis d'identifier le mécanisme de formation des agrégats de Ge sur Si(100) présentant une structuration morphologique spécifique, et de suivre la transition des îlots de la forme pré-pyramidale à la forme pyramidale. Le contrôle du site de nucléation des îlots de Ge sur les couches de SiO2 a été obtenue par FIB, permettant d'obtenir des densités d'îlots de 3,5×1010/cm2.

Quantum dots (QDs) grown on semiconductors surfaces are actually the main researchers' interest for applications in the forthcoming nanotechnology era. New frontiers in nanodevice technology rely on the precise positioning of the nucleation site and on controlling the shape and size of the dots. In this article we will review some recent studies regarding the control of the nucleation process on semiconductor surfaces. A few approaches to form ordered patterns on surfaces are described: natural patterning induced by surface instabilities (as step bunching or step meandering), in situ substrate patterning by Scanning Tunneling Microscopy (STM), high resolution patterning by Focused Ion Beam (FIB). Growth of epitaxial layers of semiconductors (Ge/Si(100) and InAs/GaAs(100)) on patterned surfaces has been studied by STM or Atomic Force Microscopy (AFM) unveiling the way in which the first atoms start to aggregate and identifying their exact nucleation site. Control of the dot size to match the patterning typical wavelength has been achieved by using surfactants on misoriented substrates. STM images acquired in real time allows one to identify the mechanism of Ge cluster formation on patterned Si(100), and to follow the island transition from pre-pyramid to pyramid. Nucleation of ordered Ge dots on SiO2 substrates has been obtained thanks to FIB tight patterning, achieving island densities of 3.5×1010/cm2.

Publié le :
DOI : 10.1016/j.crhy.2006.10.013
Keywords: Quantum dots, Nucleation process, Semiconductor surfaces
Mot clés : Boîtes quantiques, Contrôle de la nucléation, Surfaces des semi-conducteurs
Nunzio Motta 1 ; Pierre D. Szkutnik 2 ; Massimo Tomellini 3 ; Anna Sgarlata 4 ; Massimo Fanfoni 4 ; Fulvia Patella 4 ; Adalberto Balzarotti 4

1 School of Engineering Systems, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia
2 L2MP – CNRS, umr 6137, Faculté des Sciences de St Jérôme, Avenue Escadrille Normandie niemen – case 142, F-13397 Marseille cedex 20, France
3 Dipartimento di Chimica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00173 Roma, Italy
4 Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00173 Roma, Italy
@article{CRPHYS_2006__7_9-10_1046_0,
     author = {Nunzio Motta and Pierre D. Szkutnik and Massimo Tomellini and Anna Sgarlata and Massimo Fanfoni and Fulvia Patella and Adalberto Balzarotti},
     title = {Role of patterning in islands nucleation on semiconductor surfaces},
     journal = {Comptes Rendus. Physique},
     pages = {1046--1072},
     publisher = {Elsevier},
     volume = {7},
     number = {9-10},
     year = {2006},
     doi = {10.1016/j.crhy.2006.10.013},
     language = {en},
}
TY  - JOUR
AU  - Nunzio Motta
AU  - Pierre D. Szkutnik
AU  - Massimo Tomellini
AU  - Anna Sgarlata
AU  - Massimo Fanfoni
AU  - Fulvia Patella
AU  - Adalberto Balzarotti
TI  - Role of patterning in islands nucleation on semiconductor surfaces
JO  - Comptes Rendus. Physique
PY  - 2006
SP  - 1046
EP  - 1072
VL  - 7
IS  - 9-10
PB  - Elsevier
DO  - 10.1016/j.crhy.2006.10.013
LA  - en
ID  - CRPHYS_2006__7_9-10_1046_0
ER  - 
%0 Journal Article
%A Nunzio Motta
%A Pierre D. Szkutnik
%A Massimo Tomellini
%A Anna Sgarlata
%A Massimo Fanfoni
%A Fulvia Patella
%A Adalberto Balzarotti
%T Role of patterning in islands nucleation on semiconductor surfaces
%J Comptes Rendus. Physique
%D 2006
%P 1046-1072
%V 7
%N 9-10
%I Elsevier
%R 10.1016/j.crhy.2006.10.013
%G en
%F CRPHYS_2006__7_9-10_1046_0
Nunzio Motta; Pierre D. Szkutnik; Massimo Tomellini; Anna Sgarlata; Massimo Fanfoni; Fulvia Patella; Adalberto Balzarotti. Role of patterning in islands nucleation on semiconductor surfaces. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1046-1072. doi : 10.1016/j.crhy.2006.10.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.013/

[1] N. Motta Journal of Physics—Condensed Matter, 14 (2002) no. 35, p. 8353

[2] L. Vescan; T. Stoica; B. Hollander et al. Applied Physics Letters, 82 (2003) no. 20, p. 3517

[3] J. Tersoff; B.J. Spencer; A. Rastelli et al. Physical Review Letters, 89 (2002) no. 19

[4] I. Berbezier; A. Ronda; A. Portavoce Journal of Physics—Condensed Matter, 14 (2002) no. 35, p. 8283

[5] C. Teichert Physics Reports, 365 (2002), p. 335

[6] T.I. Kamins; G. Medeiros-Ribeiro; D.A.A. Ohlberg et al. Journal of Applied Physics, 85 (1999) no. 2, p. 1159

[7] B. Voigtlander Surface Science Reports, 43 (2001) no. 5–8, p. 127

[8] D.J. Bottomley Applied Physics Letters, 72 (1998) no. 7, p. 783

[9] T. Ishikawa; S. Kohmoto; K. Asakawa Applied Physics Letters, 73 (1998) no. 12, p. 1712

[10] G. Costantini; A. Rastelli; C. Manzano; et al.; G. Costantini; A. Rastelli; C. Manzano; et al.; G. Costantini; A. Rastelli; C. Manzano et al. Physical Review Letters, 85 (2004) no. 23, p. 5673

[11] K. Eberl; M.O. Lipinski; Y.M. Manz et al. Physica E—Low-Dimensional Systems & Nanostructures, 9 (2001) no. 1, p. 164

[12] A. Cazayous; J. Groenen; J. Brault et al. Physica E—Low-Dimensional Systems & Nanostructures, 17 (2003) no. 1–4, p. 533

[13] O.G. Schmidt; A. Rastelli; G.S. Kar et al. Physica E—Low-Dimensional Systems & Nanostructures, 25 (2004) no. 2–3, p. 280

[14] Z.M. Zhao; T.S. Yoon; W. Feng et al. Thin Solid Films, 508 (2006) no. 1–2, p. 195

[15] P. Kratzer; Q.K.K. Liu; P. Acosta-Diaz et al. Physical Review B, 73 (2006) no. 20

[16] F. Patella; F. Arciprete; M. Fanfoni et al. Applied Physics Letters, 88 (2006) no. 16

[17] H. Mariette Comptes Rendus Physique, 6 (2005) no. 1, p. 23

[18] Y.W. Mo; D.E. Savage; B.S. Swartzentruber et al. Physical Review Letters, 65 (1990) no. 8, p. 1020

[19] A. Vailionis; B. Cho; G. Glass et al. Physical Review Letters, 85 (2000) no. 17, p. 3672

[20] I. Goldfarb; P.T. Hayden; J.H.G. Owen; et al.; I. Goldfarb; G. Cohen-Taguri; S. Grossman et al. Physical Review B, 78 (1997) no. 20, p. 3959

[21] G. Binning; H. Rohrer; C. Gerber et al. Physical Review Letters, 49 (1982) no. 1, p. 57

[22] I.V. Markov Crystal Growth for Beginners, World Scientific, New York, 1995

[23] D. Walton Journal of Chemical Physics, 37 (1962), p. 2182

[24] G. Zinnsmeister; G. Zinnsmeister; G. Zinnsmeister Thin Solid Films, 2 (1968), p. 497

[25] R.M. Logan Thin Solid Films, 3 (1969), p. 59

[26] M.J. Stowell; T.E. Hutchinson; M.J. Stowell; T.E. Hutchinson Thin Solid Films, 8 (1971), p. 41

[27] D.R. Frankl; J.A. Venables Advances in Physics, 19 (1970), p. 409

[28] J.A. Venables Philosophical Magazine, 17 (1973), p. 697

[29] R. Vincent Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 321 (1971), p. 53

[30] M. Fanfoni; M. Tomellini; M. Volpe Applied Physics Letters, 78 (2001), p. 3424

[31] J.G. Amar; M.N. Popescu; F. Family Physical Review Letters, 86 (2001), p. 3092

[32] J.W. Evans; M.C. Bartelt Physical Review B, 66 (2002), p. 235410

[33] A. Portavoce; M. Kammler; R. Hull et al. Nanotechnology, 17 (2006) no. 17, p. 4451

[34] E.S. Kim; N. Usami; Y. Shiraki Applied Physics Letters, 72 (1998) no. 13, p. 1617

[35] P.D. Szkutnik; A. Sgarlata; S. Nufris et al. Physical Review B, 69 (2004) no. 20

[36] A. Sgarlata; P.D. Szkutnik; A. Balzarotti et al. Applied Physics Letters, 83 (2003) no. 19, p. 4002

[37] M. Tomellini; M. Fanfoni Surface Science Letters, 393 (1997), p. L99

[38] H. Omi; T. Ogino Thin Solid Films, 369 (2000) no. 1–2, p. 88

[39] A.V. Latychev; A.L. Aseev; A.B. Krasilninkov et al. Surface Science, 213 (1989), p. 157

[40] K. Yagi; H. Minoda; M. Degawa Surface Science Reports, 43 (2001), p. 45

[41] H.C. Jeong; E.D. Williams Surface Science Reports, 34 (1999), p. 171

[42] J.J. Metois; S. Stoyanov Surface Science, 440 (1999) no. 3, p. 407

[43] F.K. Men; F. Liu; P.J. Wang et al. Physical Review Letters, 88 (2002) no. 9

[44] Y. Homma; N. Aizawa Physical Review B, 62 (2000) no. 12, p. 8323

[45] U. Kohler; O. Jusko; G. Pietsch et al. Surface Science, 248 (1991) no. 3, p. 321

[46] W. Seifert; N. Carlsson; M. Miller et al. Progress in Crystal Growth and Characterization of Materials, 33 (1996) no. 4, p. 423

[47] D.E. Jesson; M. Kastner; B. Voigtlander Physical Review Letters, 84 (2000) no. 2, p. 330

[48] F. Boscherini; G. Capellini; L. Di Gaspare et al. Applied Physics Letters, 76 (2000) no. 6, p. 682

[49] F. Rosei; P. Raiteri Applied Surface Science, 195 (2002) no. 1–4, p. 16

[50] L. Vescan; K. Grimm; M. Goryll et al. Materials Science and Engineering B—Solid State Materials for Advanced Technology, 69 (2000), p. 324

[51] P.D. Szkutnik; A. Sgarlata; N. Motta et al. Materials Science & Engineering C, 23 (2003) no. 6–8, p. 1053

[52] W.K. Barton; N. Cabrera; F.C. Frank Philosophical Transactions of the Royal Society of London, Series A: Mathematical and Physical Sciences, 243 (1951), p. 299

[53] R.L. Schwoebel; E.J. Shipsey Journal of Applied Physics, 37 (1966), p. 3682

[54] G.S. Bales; A. Zangwill Physical Review B, 41 (1990), p. 5500

[55] D. Kandel; J.D. Weeks Physical Review Letters, 72 (1994), p. 1678

[56] J.M. McCoy; J.P. LaFemina Physical Review B, 54 (1996), p. 14511

[57] F. Patella; A. Sgarlata; F. Arciprete et al. Journal of Physics—Condensed Matter, 16 (2004), p. S1503

[58] F.C. Frank Growth and Perfection of Crystals (B. Roberts; R. Doremus; D. Turnbull, eds.), Wiley, New York, 1958, p. 511

[59] D. Kandel; J.D. Weeks Physical Review B, 49 (1994), p. 5554

[60] F. Patella; M. Fanfoni; F. Arciprete; et al.; F. Arciprete; A. Balzarotti; M. Fanfoni et al. Recent Research Developments in Vacuum Science & Technology, 78 (2001), p. 320

[61] G.S. Bales; A. Zangwill Physical Review B, 41 (1990) no. 9, p. 5500

[62] I. Berbezier; B. Gallas; L. Lapena et al. Journal of Vacuum Science & Technology B, 16 (1998), p. 1582

[63] J. Tersoff Physical Review B, 43 (1991) no. 11, p. 9377

[64] A. Pimpinelli; A. Videcoq Surface Science, 445 (2000), p. L23

[65] C. Schelling; M. Mühlberger; G. Springholz et al. Physical Review B, 64 (2001), p. 41301

[66] J. Myslivecek; C. Schelling; F. Schaffler et al. Surface Science, 520 (2002) no. 3, p. 193

[67] H. Lichtenberger; M. Mühlberger; F. Schäffler Applied Physics Letters, 86 (2005) no. 13, p. 131919

[68] C. Teichert; J.C. Bean; M.G. Lagally Applied Physics (a)—Materials Science & Processing, 67 (1998) no. 6, p. 675

[69] I. Berbezier; A. Ronda; F. Volpi et al. Surface Science, 531 (2003) no. 3, p. 231

[70] L.W. Guo; N. Lin; Q. Huang et al. Applied Surface Science, 126 (1998) no. 3–4, p. 213

[71] F. Watanabe; D.G. Cahill; S. Hong et al. Applied Physics Letters, 85 (2004), p. 1238

[72] I. Berbezier; A. Ronda; A. Portavoce et al. Applied Physics Letters, 83 (2003) no. 23, p. 4833

[73] P.D. Szkutnik, A. Sgarlata, A. Balzarotti, et al., Physical Review B (2006), in press

[74] X.R. Qin; B.S. Swartzentruber; M.G. Lagally Physical Review Letters, 84 (2000) no. 20, p. 4645

[75] X. Chen; D.K. Saldin; E.L. Bullock et al. Physical Review B, 55 (1997) no. 12, p. R7319

[76] S.M. Lee; E. Kim; Y.H. Lee et al. Journal of Korean Physical Society, 33 (1998)

[77] E. Kim; C.W. Oh; Y.H. Lee Physical Review Letters, 79 (1997) no. 23, p. 4621

[78] Z.Y. Lu; C.Z. Wang; K.M. Ho; J. Wingerden; A. van Dam; M.J. Haye et al. Physical Review B, 61 (2000) no. 7, p. 2329

[79] J.H. Zhu; K. Brunner; G. Abstreiter Applied Physics Letters, 73 (1998) no. 5, p. 620

[80] M. Abdallah; I. Berbezier; P. Dawson et al. Thin Solid Films, 336 (1998) no. 1–2, p. 256

[81] K. Sakamoto; H. Matsuhata; M.O. Tanner et al. Thin Solid Films, 321 (1998) no. 1–2, p. 55

[82] A. Ronda; I. Berbezier; A. Pascale et al. Materials Science and Engineering B—Solid State Materials for Advanced Technology, 101 (2003) no. 1–3, p. 95

[83] A. Portavoce; A. Ronda; I. Berbezier Materials Science and Engineering B—Solid State Materials for Advanced Technology, 89 (2002) no. 1–3, p. 205

[84] A. Portavoce; I. Berbezier; A. Ronda Materials Science and Engineering B—Solid State Materials for Advanced Technology, 101 (2003) no. 1–3, p. 181

[85] T.I. Kamins; R.S. Williams Applied Physics Letters, 71 (1997) no. 9, p. 1201

[86] P. Sutter; P. Zahl; E. Sutter Applied Physics Letters, 82 (2003) no. 20, p. 3454

[87] P. Raiteri; D.B. Migas; L. Miglio et al. Physical Review Letters, 88 (2002) no. 25

[88] P. Sutter; I. Schick; W. Ernst et al. Physical Review Letters, 91 (2003) no. 17

[89] P. Sutter; M.G. Lagally Physical Review Letters, 84 (2000) no. 20, p. 4637

[90] J. Tersoff; Y.H. Phang; Z. Zhang et al. Physical Review Letters, 75 (1995), p. 2730

[91] M. Borgstrom; V. Zela; W. Seifert Nanotechnology, 14 (2003), p. 264

[92] T. Schwarz-Selinger; Y.L. Foo; D.G. Cahill et al. Physical Review B, 65 (2002) no. 12 (125317)

[93] J. Gierak, E. Cambril, M. Schneider, et al., Presented at the 43rd International Conference on Electron, Ion, and Photon Beam Technology and Nanofabrication, Marco Island, Florida (USA), 1999 (unpublished)

[94] F. Patella; A. Sgarlata; F. Arciprete et al. Journal of Physics—Condensed Matter, 16 (2004) no. 17, p. S1503

[95] A. Sgarlata, A. Balzarotti, I. Berbezier, et al., in: IEEE Proceedings of ICONN 2006 Conference, Brisbane, Australia, 2006, in press

[96] M. Kammler; R. Hull; M.C. Reuter et al. Applied Physics Letters, 82 (2003) no. 7, p. 1093

[97] Z. Zhong; A. Halilovic; M. Mülberger et al. Journal of Applied Physics, 93 (2003), p. 6256

[98] F. Ratto; A. Locatelli; S. Fontana et al. Physical Review Letters, 96 (2006) no. 9

[99] A. Karmous; A. Cuenat; A. Ronda et al. Applied Physics Letters, 85 (2004) no. 26, p. 6401

[100] D.J. Srolovitz Acta Metallurgica, 37 (1989), p. 621

[101] I. Berbezier; A. Karmous; A. Ronda et al. Journal of Physics: Conference Series, 10 (2005), p. 73

[102] A.V. Kolobov; A.A. Shklyaev; H. Oyanagi et al. Applied Physics Letters, 78 (2001) no. 17, p. 2563

[103] A.A. Shklyaev; M. Shibata; M. Ichikawa Physical Review B, 62 (2000) no. 3, p. 1540

[104] A. Barski; M. Derivaz; J.L. Rouviere et al. Applied Physics Letters, 77 (2000) no. 22, p. 3541

[105] A.A. Shklyaev; M. Ichikawa Applied Physics Letters, 80 (2002) no. 8, p. 1432

[106] T. Baron; B. Pelissier; L. Perniola et al. Applied Physics Letters, 83 (2003) no. 7, p. 1444

[107] A. Karmous; I. Berbezier; A. Ronda Physical Review B, 73 (2006) no. 7, p. 075323

[108] A. Rastelli; H. von Kanel Surface Science, 515 (2002) no. 2–3, p. L493

[109] P.D. Szkutnik, A. Sgarlata, E. Placidi, et al., Surface Science (2006), in press

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Dynamics of crystal steps

Olivier Pierre-Louis

C. R. Phys (2005)


Nanometric artificial structuring of semiconductor surfaces for crystalline growth

J. Eymery; G. Biasiol; E. Kapon; ...

C. R. Phys (2005)


Growth of a strained epitaxial film on a patterned substrate

Xianbin Xu; Jean-Noël Aqua; Thomas Frisch

C. R. Phys (2013)