[Nucléation de nouvelles particules dans l'atmosphère]
Une fraction significative du nombre total de particules présentes dans l'atmosphère est formée initialement par nucléation homogène à partir de la phase gazeuse. La nucléation binaire de l'acide sulfurique et de l'eau, la nucléation ternaire de l'acide sulfurique, de l'eau et de l'ammoniac, enfin la nucléation induite par les ions, sont vraisemblablement les processus de nucléation les plus importants dans le contexte des aérosols atmosphériques. Au cours des vingt dernières années, l'amélioration considérable des instruments de mesure a permis de nombreuses observations et caractérisations de la nucléation y compris la quantification du taux de nucléation, la caractérisation de la croissance et les premières caractérisations des nanoparticules dès leur formation. La nucléation a été observée en différents points de l'atmosphère : dans la couche limite, dans la troposphère libre, dans des zones éloignées de toute pollution, dans les zones côtières, dans les forêts boréales comme dans les zones urbaines et leurs panaches de pollution. Dans la plupart des cas, il est suggéré que l'acide sulfurique gazeux est le gaz précurseur essentiel. Après la nucléation, d'autres substances, notamment des composés organiques à basse pression de vapeur saturante, jouent souvent un rôle dans la croissance des aérosols. Les oxydes d'iode semblent responsables de la nucléation observée dans certaines zones côtières. De récents progrès théoriques permettent désormais un traitement cinétique du processus de nucléation, basé sur les caractéristiques thermochimiques mesurées de la formation des agrégats moléculaires. Cette approche représente une amélioration considérable par rapport au traitement classique de la nucléation.
Il est nécessaire de comprendre en détail les mécanismes de nucléation des aérosols atmosphériques, car les particules fraîchement formées influent directement sur la concentration et la distribution en tailles des aérosols atmosphériques. La formation des nuages et les précipitations en sont affectées, influençant le climat. Les émissions anthropiques influent fortement sur les processus de nucléation.
Malgré des efforts de recherche de grande envergure, il reste des incohérences substantielles, les études de laboratoire restant en désaccord avec les modélisations comme avec les observations sur le terrain. Quelques questions cruciales restent à résoudre en ce qui concerne la possibilité de prédire la nucléation atmosphérique de façon générale, en ce qui concerne les substances jouant un rôle dans la nucléation, puis dans la croissance, et en ce qui concerne la taille et la composition de l'agrégat critique.
A significant fraction of the total number of particles present in the atmosphere is formed originally by nucleation from the gas phase. Binary nucleation of sulphuric acid and water, ternary nucleation of sulphuric acid, water and ammonia and ion-induced nucleation are thought to be the most important aerosol nucleation processes in the atmosphere. Within the last two decades, instrumentation to observe and characterize nucleation has improved greatly and numerous observations of nucleation have been made including quantification of the nucleation rate, characterization of the growth process and first chemical characterizations of the freshly formed particles. Nucleation has been observed at many different places in the atmosphere: in the boundary layer, in the free troposphere, in remote locations, in coastal areas, in boreal forests as well as urban areas and pollution plumes. In most cases gaseous sulphuric acid is assumed to be the key precursor gas. After nucleation, other supersaturated substances, especially low vapour pressure organics often take part in the subsequent aerosol growth. Iodine oxides seem to be responsible for nucleation observed in some coastal areas.
Recent advances in modelling allow for a kinetic treatment of the nucleation process based on measured thermochemical data for the cluster formation. Considerable improvement over the classical nucleation treatment is expected from this approach.
A detailed understanding of atmospheric aerosol nucleation processes is needed as the freshly formed particles directly influence the number concentration and size distribution of the atmospheric aerosol. The formation of clouds and precipitation is affected and influences on climate are anticipated. Anthropogenic emissions influence atmospheric aerosol nucleation processes considerably.
Despite the comprehensive research efforts, substantial inconsistencies remain and conflicting results of laboratory studies, model studies as well as atmospheric observations persist. Several key questions about the predictability of atmospheric nucleation in general, about the substances, that take part in nucleation and subsequent growth and about the size and composition of the critical cluster, have not been resolved so far.
Mots-clés : Aérosols, Nucléation, Particules, Clusters, Atmosphère
Joachim Curtius 1
@article{CRPHYS_2006__7_9-10_1027_0, author = {Joachim Curtius}, title = {Nucleation of atmospheric aerosol particles}, journal = {Comptes Rendus. Physique}, pages = {1027--1045}, publisher = {Elsevier}, volume = {7}, number = {9-10}, year = {2006}, doi = {10.1016/j.crhy.2006.10.018}, language = {en}, }
Joachim Curtius. Nucleation of atmospheric aerosol particles. Comptes Rendus. Physique, Nucleation, Volume 7 (2006) no. 9-10, pp. 1027-1045. doi : 10.1016/j.crhy.2006.10.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.018/
[1] Aerosol Technology—Properties, Behaviour, and Measurement of Airborne Particles, John Wiley & Sons, Inc., New York, 1998
[2] Atmospheric Chemistry and Physics—From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1998
[3] Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., Volume 35 (2004), pp. 143-176
[4] et al. Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements, Atmos. Chem. Phys., Volume 5 (2005), pp. 3053-3069
[5] Tropospheric aerosols (P.V. Hobbs, ed.), Aerosol-Cloud-Climate Interactions, Academic Press, San Diego, CA, 1993, pp. 1-31
[6] et al. Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8107 | DOI
[7] Strong present-day aerosol cooling implies a hot future, Nature, Volume 435 (2005), pp. 1187-1190
[8] et al. Aerosols, their direct and indirect effect (J.T. Houghton et al., eds.), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, United Kingdom, New York, NY, USA, 2001, p. 881
[9] Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, Volume 438 (2005), pp. 1138-1141
[10] et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., Volume 6 (2006), pp. 613-666
[11] Global indirect aerosol effects: a review, Atmos. Chem. Phys., Volume 5 (2005), pp. 715-737
[12] Climate forcing by aerosols—a hazy picture, Science, Volume 300 (2003), pp. 1103-1104
[13] Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison, J. Aerosol Sci., Volume 30 (1999), pp. 1079-1094
[14] Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science, Volume 312 (2006), pp. 1375-1378
[15] The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales, Atmos. Chem. Phys. Discuss., Volume 6 (2006), pp. 7323-7368
[16] Air pollution-related illness: Effects of particles, Science, Volume 308 (2005), pp. 804-806
[17] Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Amer. Medical Assoc., Volume 287 (2002), pp. 1132-1141
[18] Health effects of outdoor air pollution, Amer. J. Respiratory Critical Care Medicine, Volume 153 (1996), pp. 3-50
[19] Epidemiological evidence on health effects of ultrafine particles, Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, Volume 15 (2002), pp. 189-201
[20] On the vapor pressure of sulfuric acid, Geophys. Res. Lett., Volume 7 (1980), pp. 433-436
[21] H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions, J. Geophys. Res.—Atmospheres, Volume 102 (1997), pp. 3725-3735
[22] Particle formation in the upper tropical troposphere—a source of nuclei for the stratospheric aerosol, Science, Volume 270 (1995), pp. 1650-1653
[23] Aerosol production and growth in the upper free troposphere, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 24751-24762
[24] Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., Volume 30 (2003), p. 1503 | DOI
[25] Meridional distributions of aerosol particle number concentrations in the upper troposphere and lower stratosphere obtained by Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights, J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 4114 | DOI
[26] New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys. Res. Lett., Volume 26 (1999), pp. 307-310
[27] Nucleation in the equatorial free troposphere: Favorable environments during PEM-tropics, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 5735-5744
[28] et al. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR), Tellus B, Volume 53 (2001), pp. 324-343
[29] Observations of ultrafine aerosol particle formation and growth in boreal forest, Geophys. Res. Lett., Volume 24 (1997), pp. 1219-1222
[30] Secondary organic aerosol formation vs primary organic aerosol emission: In situ evidence for the chemical coupling between monoterpene acidic photooxidation products and new particle formation over forests, Environ. Sci. Tech., Volume 33 (1999), pp. 1028-1037
[31] A case study of gas-to-particle conversion in an eastern Canadian forest, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 8095-8111
[32] Observations of particle formation and growth in a mountainous forest region in central Europe, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D23204 | DOI
[33] On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett., Volume 26 (1999), pp. 1707-1710
[34] A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. Geophys. Res.—Atmospheres, Volume 103 (1998), pp. 16385-16396
[35] Preface to topical collection on new particle formation in Atlanta, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D22S01
[36] Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Tech., Volume 38 (2004), pp. 253-264
[37] Particle growth in the plumes of coal-fired power plants, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4155 | DOI
[38] Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 26555-26567
[39] et al. New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P, J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 8814 | DOI
[40] How important is nucleation in regional/global modelling?, Geophys. Res. Lett., Volume 31 (2004), p. L12109 | DOI
[41] Global sulfur emissions from 1850 to 2000, Chemosphere, Volume 58 (2005), pp. 163-175
[42] An improved model for hydrate formation in sulfuric acid–water nucleation, J. Chem. Phys., Volume 116 (2002), pp. 218-228
[43] An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4622 | DOI
[44] Binary H2SO4–H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D04201 | DOI
[45] Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid, J. Phys. Chem. A, Volume 110 (2006), pp. 9525-9528
[46] A preliminary-study of the effect of ammonia on particle nucleation in the marine boundary-layer, J. Geophys. Res.—Atmospheres, Volume 100 (1995), pp. 7147-7160
[47] Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Engrg. Commun., Volume 151 (1996), pp. 53-64
[48] Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 26349-26353
[49] Effect of ammonia on new particle formation: A kinetic H2SO4–H2O–NH3 nucleation model constrained by laboratory measurements, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D01204 | DOI
[50] From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res.—Atmospheres, Volume 106 (2001), pp. 4797-4814
[51] Model studies on ion-induced nucleation in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4427 | DOI
[52] Massive positive and negative chemiions in the exhaust of an aircraft jet engine at ground-level: mass distribution measurements and implications for aerosol formation, Atmos. Environ., Volume 36 (2002), pp. 1821-1825
[53] et al. New particle formation observed in the tropical/subtropical cirrus clouds, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D20209 | DOI
[54] Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D08204 | DOI
[55] Tropospheric ionization and aerosol production: A model study, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D19206 | DOI
[56] Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, Volume 406 (2000), pp. 611-614
[57] Production of ice in tropospheric clouds—a review, Bull. Amer. Meteorolog. Soc., Volume 86 (2005), pp. 795-807
[58] Keimbildung in übersättigten Gebilden, Z. Phys. Chem., Volume 119 (1926), pp. 277-301
[59] Keimbildungsgeschwindigkeit in übersättigten Dämpfen, Z. Phys. Chem., Volume 125 (1927), pp. 236-242
[60] On the relationship between nucleation work, nucleus size and nucleation rate, J. Chem. Phys., Volume 76 (1982), pp. 5098-5102
[61] Measurement of the molecular content of binary nuclei—use of the nucleation rate surface for ethanol–hexanol, J. Chem. Phys., Volume 99 (1993), pp. 4693-4704
[62] Homogeneous nucleation rates for water, J. Chem. Phys., Volume 99 (1993), pp. 4680-4692
[63] Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 23709-23718
[64] The kinetics of phase transition in binary systems, J. Chem. Phys., Volume 18 (1950), pp. 840-848
[65] Self-nucleation in the sulfuric acid–water system, J. Chem. Phys., Volume 35 (1961), pp. 795-799
[66] Heteromolecular nucleation in the sulfuric acid–water system, Atmos. Environ., Volume 23 (1988), pp. 2053-2057
[67] Stable sulphate clusters as a source of new atmospheric particles, Nature, Volume 404 (2000), pp. 66-69
[68] On a method of making visible the paths of ionising particles through a gas, Proceedings of the Royal Society of London Series a—Containing Papers of a Mathematical and Physical Character, Volume 85 (1911), pp. 285-288
[69] Conduction of Electricity Through Gases, Cambridge Univ. Press, Cambridge, 1906
[70] Cosmic rays, clouds, and climate, Science, Volume 298 (2002), pp. 1732-1737
[71] Binary nucleation in acid water-systems 2. Sulfuric-acid water and a comparison with methanesulfonic-acid water, J. Chem. Phys., Volume 94 (1991), pp. 6842-6850
[72] Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO4–(H2SO4)(x)(HNO3)(y), J. Phys. Chem. A, Volume 105 (2001), pp. 10867-10873
[73] Cluster ion thermal decomposition (II): Master equation modeling in the low-pressure limit and fall-off regions. Bond energies for HSO4–(H2SO4)(x)(HNO3)(y), J. Phys. Chem. A, Volume 105 (2001), pp. 10874-10883
[74] Thermodynamic measurements of H2SO4/H2O molecular cluster ions., Abstracts of Papers of the Amer. Chem. Soc., Volume 224 (2002), p. U329
[75] Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 2. Measurements and ab initio structures of negative ions, J. Phys. Chem. A, Volume 107 (2003), pp. 9812-9824
[76] Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 1. Positive ions, J. Phys. Chem. A, Volume 107 (2003), pp. 9800-9811
[77] J. Curtius, E.R. Lovejoy, K.D. Froyd, Atmospheric ion-induced aerosol nucleation, Space Sci. Rev. (2006), in press
[78] Parametrization of ternary nucleation rates for H2SO4–NH3–H2O vapors, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4381 | DOI
[79] A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D19205 | DOI
[80] Evaluating aerosol nucleation parameterizations in a global atmospheric model, Geophys. Res. Lett., Volume 33 (2006), p. L10808 | DOI
[81] Nucleation—measurements, theory, and atmospheric applications, Annu. Rev. Phys. Chem., Volume 46 (1995), pp. 489-524
[82] Measurement of the gas-phase concentration of H2SO4 and methane sulfonic-acid and estimates of H2SO4 production and loss in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 98 (1993), pp. 9001-9010
[83] The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe, Atmos. Chem. Phys., Volume 5 (2005), pp. 1773-1785
[84] The history of condensation nucleus counters, Aerosol Sci. Tech., Volume 33 (2000), pp. 297-322
[85] An ultrafine aerosol condensation nucleus counter, Aerosol Sci. Tech., Volume 14 (1991), pp. 48-65
[86] Characterization of an automated, water-based expansion condensation nucleus counter for ultrafine particles, Aerosol Sci. Tech., Volume 39 (2005), pp. 1174-1183
[87] Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (similar to 3–10 nm) size distributions, J. Aerosol Sci., Volume 29 (1998), pp. 601-615
[88] Aerosol classification by electric mobility: Apparatus, theory, and application, J. Aerosol Sci., Volume 6 (1975), pp. 443-451
[89] History of electrical aerosol measurements, Aerosol Sci. Technol., Volume 28 (1998), pp. 301-380
[90] A review of atmospheric aerosol measurements, Atmos. Environ., Volume 34 (2000), pp. 1959-1999
[91] A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm, J. Aerosol Sci., Volume 22 (1991), pp. 289-296
[92] Performance of Vienna type differential mobility analyzer at 1.2–20 nanometer, Aerosol Sci. Tech., Volume 27 (1997), pp. 651-672
[93] Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8110 | DOI
[94] Iodine oxide homogeneous nucleation: An explanation for coastal new particle production, Geophys. Res. Lett., Volume 28 (2001), pp. 1949-1952
[95] Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition, Aerosol Sci. Tech., Volume 37 (2003), pp. 471-475
[96] Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D22S03 | DOI
[97] Chemical characterization of individual, airborne sub-10-nm particles and molecules, Analyt. Chem., Volume 78 (2006), pp. 1750-1754
[98] Aerosol formation—Atmospheric particles from organic vapours, Nature, Volume 416 (2002), pp. 497-498
[99] The use of the pulse height analyser ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition, J. Aerosol Sci., Volume 35 (2004), pp. 205-216
[100] Rapid formation of sulfuric acid particles at near-atmospheric conditions, Science, Volume 307 (2005), pp. 698-700
[101] New particle formation from photooxidation of diiodomethane (CH2I2), J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 4318 | DOI
[102] Experiments on gas–liquid nucleation of sulfuric acid and wafer, J. Chem. Phys., Volume 107 (1997), pp. 920-926
[103] An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions, Atmos. Chem. Phys., Volume 6 (2006), pp. 2927-2942
[104] Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn, Tellus B, Volume 48 (1996), pp. 213-222
[105] Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn, Tellus B, Volume 48 (1996), pp. 197-212
[106] Determination of nucleation and growth rates from observation of a SO2 induced atmospheric nucleation event, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4123 | DOI
[107] Seasonal and diurnal variation of aerosol size distributions (
[108] et al. Night-time formation and occurrence of new particles associated with orographic clouds, Atmos. Environ., Volume 31 (1997), pp. 2545-2559
[109] Evolution of particle concentration and size distribution observed upwind, inside and downwind hill cap clouds at connected flow conditions during FEBUKO, Atmos. Environ., Volume 39 (2005), pp. 4233-4245
[110] The mechanism of the HO–SO2 reaction, Atmos. Environ., Volume 17 (1983), pp. 2231-2235
[111] Kinetics and products of the gas-phase reaction of SO3 with water, J. Phys. Chem., Volume 100 (1996), pp. 19911-19916
[112] Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys., Volume 6 (2006), pp. 787-793
[113] Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res.—Atmospheres, Volume 102 (1997), pp. 4375-4385
[114] Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, Volume 301 (2003), pp. 1886-1889
[115] Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at Mcmurdo station, Antarctica, during the spring of 1987, J. Geophys. Res.—Atmospheres, Volume 94 (1989), pp. 11253-11269
[116] Measurement of the condensation nuclei profile to 31 km in the Arctic in January 1989 and comparisons with Antarctic measurements, Geophys. Res. Lett., Volume 17 (1990), pp. 357-360
[117] Observations of condensation nuclei in the airborne Antarctic ozone experiment—implications for new particle formation and polar stratospheric cloud formation, J. Geophys. Res.—Atmospheres, Volume 94 (1989), pp. 16437-16448
[118] Measurements of condensation nuclei in the airborne Arctic stratospheric expedition—observations of particle-production in the polar vortex, Geophys. Res. Lett., Volume 17 (1990), pp. 361-364
[119] Origin of condensation nuclei in the springtime polar stratosphere, J. Geophys. Res.—Atmospheres, Volume 100 (1995), pp. 5215-5227
[120] Bursts of intermediate ions in atmospheric air, J. Geophys. Res.—Atmospheres, Volume 103 (1998), pp. 13909-13915
[121] Annual and size dependent variation of growth rates and ion concentrations in boreal forest, Boreal Environ. Res., Volume 10 (2005), pp. 357-369
[122] Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere, Geophys. Res. Lett., Volume 29 (2002), p. 1698 | DOI
[123] Detection of massive negative chemiions in the exhaust plume of a jet aircraft in flight, Geophys. Res. Lett., Volume 26 (1999), pp. 1577-1580
[124] Chemiion concentration measurements in jet engine exhaust at the ground: Implications for ion chemistry and aerosol formation in the wake of a jet aircraft, Geophys. Res. Lett., Volume 27 (2000), pp. 1723-1726
[125] Negative atmospheric ions and their potential role in ion-induced nucleation, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D04305 | DOI
[126] et al. A dedicated study of new Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8108 | DOI
[127] Iodine oxide in the marine boundary layer, Nature, Volume 397 (1999), pp. 572-573
[128] Observations of OIO in the remote marine boundary layer, Geophys. Res. Lett., Volume 28 (2001), pp. 1945-1948
[129] Observations of iodine monoxide in the remote marine boundary layer, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 14363-14369
[130] et al. Direct evidence for coastal iodine particles from Laminaria macroalgae—linkage to emissions of molecular iodine, Atmos. Chem. Phys., Volume 4 (2004), pp. 701-713
[131] Absolute absorption cross-section and photolysis rate of I-2, Atmos. Chem. Phys., Volume 4 (2004), pp. 1443-1450
[132] Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation, Atmos. Chem. Phys., Volume 6 (2006), pp. 883-895
[133] Coastal new particle formation: A review of the current state-of-the-art, Environ. Chem., Volume 2 (2005), pp. 245-255
[134] Blue hazes in the atmosphere, Nature, Volume 187 (1960), pp. 641-643
[135] Analysis of the growth of nucleation mode particles observed in Boreal forest, Tellus B, Volume 50 (1998), pp. 449-462
[136] New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence, Geophys. Res. Lett., Volume 27 (2000), pp. 3325-3328
[137] et al. Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., Volume 5 (2005), pp. 1053-1123
[138] Gas-phase terpene oxidation products: a review, Atmos. Environ., Volume 33 (1999), pp. 1423-1439
[139] Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem., Volume 26 (1997), pp. 189-222
[140] Products and mechanism of the gas phase reaction of ozone with beta-pinene, J. Atmos. Chem., Volume 35 (1999), pp. 165-197
[141] Cis-pinic acid, a possible precursor for organic aerosol formation from ozonolysis of alpha-pinene, Atmos. Environ., Volume 32 (1998), pp. 1657-1661
[142] Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests, Geophys. Res. Lett., Volume 26 (1999), pp. 55-58
[143] The atmospheric aerosol-forming potential of whole gasoline vapor, Science, Volume 276 (1997), pp. 96-99
[144] Identification of polymers as major components of atmospheric organic aerosols, Science, Volume 303 (2004), pp. 1659-1662
[145] Atmospheric new particle formation enhanced by organic acids, Science, Volume 304 (2004), pp. 1487-1490
[146] Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., Volume 30 (2003), p. 1585 | DOI
[147] Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O-3 with cyclohexene and homologous compounds, J. Phys. Chem. A, Volume 106 (2002), pp. 4390-4402
[148] Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climatic Change, Volume 77 (2006), pp. 211-219
[149] Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters, Atmos. Chem. Phys., Volume 2 (2002), pp. 1-16
[150] Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys., Volume 4 (2004) no. 1, pp. 19-34
- Spatiotemporal variations of stratospheric aerosol size between 2002 and 2005 from measurements with SAGE III/M3M, Atmospheric Chemistry and Physics, Volume 25 (2025) no. 6, p. 3717 | DOI:10.5194/acp-25-3717-2025
- Cluster Structure and Ordering in the Nucleation and Growth of Binary Molecular Mixtures, The Journal of Physical Chemistry B (2025) | DOI:10.1021/acs.jpcb.5c00430
- Significant spatial gradients in new particle formation frequency in Greece during summer, Atmospheric Chemistry and Physics, Volume 24 (2024) no. 1, p. 65 | DOI:10.5194/acp-24-65-2024
- Computational Study of the Formation of Atmospheric Aerosol Precursors Under Ambient Conditions: A Case Study of the Interaction Between Sea Salt, Water, and Sulfuric Acid Molecules, International Journal of Quantum Chemistry, Volume 124 (2024) no. 20 | DOI:10.1002/qua.27489
- On the dependence of electrical mobility on temperature, humidity and structure of alkylammonium ions, Journal of Aerosol Science, Volume 179 (2024), p. 106353 | DOI:10.1016/j.jaerosci.2024.106353
- Sources and Distribution of Light NMHCs in the Marine Boundary Layer of the Northern Indian Ocean During Winter: Implications to Aerosol Formation, Journal of Geophysical Research: Atmospheres, Volume 129 (2024) no. 3 | DOI:10.1029/2023jd039433
- The impact of ammonia on particle formation in the Asian Tropopause Aerosol Layer, npj Climate and Atmospheric Science, Volume 7 (2024) no. 1 | DOI:10.1038/s41612-024-00758-3
- Numerical simulation and evaluation of global ultrafine particle concentrations at the Earth's surface, Atmospheric Chemistry and Physics, Volume 23 (2023) no. 20, p. 13191 | DOI:10.5194/acp-23-13191-2023
- A year-round study of ambient gaseous pollutants, their atmospheric chemistry and role in secondary particle formation at an urban site in Delhi, Atmospheric Environment, Volume 295 (2023), p. 119557 | DOI:10.1016/j.atmosenv.2022.119557
- Breathing Fresh Air in the City: Implementing Avenue Trees as a Sustainable Solution to Reduce Particulate Pollution in Urban Agglomerations, Plants, Volume 12 (2023) no. 7, p. 1545 | DOI:10.3390/plants12071545
- Spatio-Temporal Distributions of the Natural Non-Sea-Salt Aerosol Over the Southern Ocean and Coastal Antarctica and Its Potential Source Regions, Tellus B: Chemical and Physical Meteorology, Volume 75 (2023) no. 1, p. 47 | DOI:10.16993/tellusb.1869
- Subchronic pulmonary toxicity of ambient particles containing cement production–related elements, Toxicology Reports, Volume 11 (2023), p. 116 | DOI:10.1016/j.toxrep.2023.07.002
- On Solvent Losses in Amine Absorption Columns, ACS Sustainable Chemistry Engineering, Volume 10 (2022) no. 34, p. 11154 | DOI:10.1021/acssuschemeng.2c02179
- Growth Mechanism of Chromium Carbide Coating on Porous Carbon Paper, Crystal Research and Technology, Volume 57 (2022) no. 10 | DOI:10.1002/crat.202200075
- Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly, International Journal of Environmental Research and Public Health, Volume 19 (2022) no. 20, p. 13540 | DOI:10.3390/ijerph192013540
- Single-step process for transparent conductive ZnO:Ga films with uniform ultrahigh haze by oblique angle deposition, Journal of the European Ceramic Society, Volume 42 (2022) no. 7, p. 3234 | DOI:10.1016/j.jeurceramsoc.2022.02.028
- Removal of VOCs from wood processing ventilation air by advanced oxidation gas-to-particle prototype system, Process Safety and Environmental Protection, Volume 161 (2022), p. 520 | DOI:10.1016/j.psep.2022.03.043
- Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research, Atmospheric Measurement Techniques, Volume 14 (2021) no. 11, p. 7329 | DOI:10.5194/amt-14-7329-2021
- Stochastic effects in H2SO4-H2O cluster growth, Aerosol Science and Technology, Volume 54 (2020) no. 9, p. 1007 | DOI:10.1080/02786826.2020.1755012
- Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations, Atmosphere, Volume 11 (2020) no. 11, p. 1168 | DOI:10.3390/atmos11111168
- Particle number size distributions and new particle formation events over the northern Indian Ocean during continental outflow, Atmospheric Environment, Volume 238 (2020), p. 117719 | DOI:10.1016/j.atmosenv.2020.117719
- Atmospheric New Particle Formation and Cloud Condensation Nuclei, Atmospheric Multiphase Chemistry (2020), p. 415 | DOI:10.1002/9781119422419.ch7
- Evolution of Condensable Fine Particle Size Distribution in Simulated Flue Gas by External Regulation for Growth Enhancement, Environmental Science Technology, Volume 54 (2020) no. 7, p. 3840 | DOI:10.1021/acs.est.9b06569
- Spatiotemporal mixed effects modeling for the estimation of PM2.5from MODIS AOD over the Indian subcontinent, GIScience Remote Sensing, Volume 57 (2020) no. 2, p. 159 | DOI:10.1080/15481603.2020.1712101
- Impact of Sea Breeze Dynamics on Atmospheric Pollutants and Their Toxicity in Industrial and Urban Coastal Environments, Remote Sensing, Volume 12 (2020) no. 4, p. 648 | DOI:10.3390/rs12040648
- Computational Study of the Thermodynamics of New Particle Formation Initiated by Complexes of H2SO4–H2O–NHx, CH3SO3H–H2O–NHx, and HO2–H2O–NHx, ACS Earth and Space Chemistry, Volume 3 (2019) no. 8, p. 1415 | DOI:10.1021/acsearthspacechem.9b00120
- Air Pollution in an Urban Area of Mexico: Sources of Emission (Vehicular, Natural, Industrial, and Brick Production), Air Pollution - Monitoring, Quantification and Removal of Gases and Particles (2019) | DOI:10.5772/intechopen.80000
- Characterisation of the transfer of cluster ions through an atmospheric pressure interface time-of-flight mass spectrometer with hexapole ion guides, Atmospheric Measurement Techniques, Volume 12 (2019) no. 10, p. 5231 | DOI:10.5194/amt-12-5231-2019
- New approach to handle gas-particle transformation in air pollution modelling using fractional derivatives, Atmospheric Pollution Research, Volume 10 (2019) no. 5, p. 1577 | DOI:10.1016/j.apr.2019.05.006
- Nucleation rates of water using Adjusted SAFT-0 EOS, Fluid Phase Equilibria, Volume 501 (2019), p. 112272 | DOI:10.1016/j.fluid.2019.112272
- Evaluation of the Submicron Particles Distribution Between Mountain and Urban Site: Contribution of the Transportation for Defining Environmental and Human Health Issues, International Journal of Environmental Research and Public Health, Volume 16 (2019) no. 8, p. 1339 | DOI:10.3390/ijerph16081339
- New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate, Journal of Geophysical Research: Atmospheres, Volume 124 (2019) no. 13, p. 7098 | DOI:10.1029/2018jd029356
- A New Mechanism of Acid Rain Generation from HOSO at the Air–Water Interface, Journal of the American Chemical Society, Volume 141 (2019) no. 42, p. 16564 | DOI:10.1021/jacs.9b07912
- Gas-Phase Reactivity of Carbonate Ions with Sulfur Dioxide: an Experimental Study of Clusters Reactions, Journal of the American Society for Mass Spectrometry, Volume 30 (2019) no. 10, p. 1964 | DOI:10.1007/s13361-019-02228-0
- Investigation on the near-field evolution of industrial plumes from metalworking activities, Science of The Total Environment, Volume 668 (2019), p. 443 | DOI:10.1016/j.scitotenv.2019.02.399
- Experimental study of H2SO4 aerosol nucleation at high ionization levels, Atmospheric Chemistry and Physics, Volume 18 (2018) no. 8, p. 5921 | DOI:10.5194/acp-18-5921-2018
- Atmospheric new particle formation and growth: review of field observations, Environmental Research Letters, Volume 13 (2018) no. 10, p. 103003 | DOI:10.1088/1748-9326/aadf3c
- Biological effects of airborne fine particulate matter (PM 2.5 ) exposure on pulmonary immune system, Environmental Toxicology and Pharmacology, Volume 60 (2018), p. 195 | DOI:10.1016/j.etap.2018.04.004
- A 3D particle Monte Carlo approach to studying nucleation, Journal of Computational Physics, Volume 363 (2018), p. 30 | DOI:10.1016/j.jcp.2018.02.032
- Characterization of particle emissions from consumer fused deposition modeling 3D printers, Aerosol Science and Technology, Volume 51 (2017) no. 11, p. 1275 | DOI:10.1080/02786826.2017.1342029
- Molecular-resolution simulations of new particle formation: Evaluation of common assumptions made in describing nucleation in aerosol dynamics models, Aerosol Science and Technology, Volume 51 (2017) no. 4, p. 397 | DOI:10.1080/02786826.2016.1262530
- Observations of particles at their formation sizes in Beijing, China, Atmospheric Chemistry and Physics, Volume 17 (2017) no. 14, p. 8825 | DOI:10.5194/acp-17-8825-2017
- Inhalation of concentrated PM2.5 from Mexico City acts as an adjuvant in a guinea pig model of allergic asthma, Environmental Pollution, Volume 228 (2017), p. 474 | DOI:10.1016/j.envpol.2017.05.050
- Relación de los mecanismos inmunológicos del asma y la contaminación ambiental, Revista de la Facultad de Medicina, Volume 65 (2017) no. 2, p. 333 | DOI:10.15446/revfacmed.v65n2.59954
- Fogs: Physical Basis, Characteristic Properties, and Impacts on the Environment and Human Health, Water, Volume 9 (2017) no. 10, p. 807 | DOI:10.3390/w9100807
- Chapter 10 New Considerations for PM, Black Carbon, and Particle Number Concentration for Air Quality Monitoring Across Different European Cities, Air Quality (2016), p. 177 | DOI:10.1201/9781315366074-11
- Aeroparticles, Composition, and Lung Diseases, Frontiers in Immunology, Volume 7 (2016) | DOI:10.3389/fimmu.2016.00003
- Temporal evolution of charged and neutral nanoparticle concentrations during atmospheric new particle formation events and its implications for ion-induced nucleation, Frontiers of Environmental Science Engineering, Volume 10 (2016) no. 5 | DOI:10.1007/s11783-016-0862-x
- Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway, Science of The Total Environment, Volume 543 (2016), p. 161 | DOI:10.1016/j.scitotenv.2015.11.030
- Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts, Science of The Total Environment, Volume 563-564 (2016), p. 351 | DOI:10.1016/j.scitotenv.2016.03.246
- Gas-phase hydrolysis of triplet SO2: A possible direct route to atmospheric acid formation, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep30000
- Overview: Understanding nucleation phenomena from simulations of lattice gas models, The Journal of Chemical Physics, Volume 145 (2016) no. 21 | DOI:10.1063/1.4959235
- New particle formation events arising from painting materials in an indoor microenvironment, Atmospheric Environment, Volume 102 (2015), p. 86 | DOI:10.1016/j.atmosenv.2014.11.048
- AEROSOLS | Aerosol–Cloud Interactions and Their Radiative Forcing, Encyclopedia of Atmospheric Sciences (2015), p. 17 | DOI:10.1016/b978-0-12-382225-3.00052-9
- Atmospheric Visibility and PM10 as Indicators of New Particle Formation in an Urban Environment, Environmental Science Technology, Volume 49 (2015) no. 21, p. 12751 | DOI:10.1021/acs.est.5b01851
- Slow water transport in MgSO4 aerosol droplets at gel-forming relative humidities, Physical Chemistry Chemical Physics, Volume 17 (2015) no. 44, p. 29753 | DOI:10.1039/c5cp05181a
- The formation and growth of ultrafine particles in two contrasting environments: a case study, Annales Geophysicae, Volume 32 (2014) no. 7, p. 817 | DOI:10.5194/angeo-32-817-2014
- Production and growth of new particles during two cruise campaigns in the marginal seas of China, Atmospheric Chemistry and Physics, Volume 14 (2014) no. 15, p. 7941 | DOI:10.5194/acp-14-7941-2014
- Effect of ions on the measurement of sulfuric acid in the CLOUD experiment at CERN, Atmospheric Measurement Techniques, Volume 7 (2014) no. 11, p. 3849 | DOI:10.5194/amt-7-3849-2014
- Anisotropic interfacial tension, contact angles, and line tensions: A graphics-processing-unit-based Monte Carlo study of the Ising model, Physical Review E, Volume 90 (2014) no. 6 | DOI:10.1103/physreve.90.062106
- Determination of the Origin and Magnitude of Logarithmic Finite-Size Effects on Interfacial Tension: Role of Interfacial Fluctuations and Domain Breathing, Physical Review Letters, Volume 112 (2014) no. 12 | DOI:10.1103/physrevlett.112.125701
- Nucleation of charged droplets; an ion-atmosphere model, RSC Adv., Volume 4 (2014) no. 85, p. 45275 | DOI:10.1039/c4ra05409a
- Visible spectrum photofragmentation of O3−(H2O)n, n ≤ 16, The Journal of Chemical Physics, Volume 141 (2014) no. 15 | DOI:10.1063/1.4898373
- Homogeneous and heterogeneous nucleation of water vapor: A comparison using molecular dynamics simulation, Chemical Physics, Volume 423 (2013), p. 135 | DOI:10.1016/j.chemphys.2013.07.005
- Simplified classification of atmospheric charged particles, Journal of Electrostatics, Volume 71 (2013) no. 4, p. 781 | DOI:10.1016/j.elstat.2012.12.029
- Rain scavenging of soluble gases by non-evaporating and evaporating droplets from inhomogeneous atmosphere, Meteorology and Atmospheric Physics, Volume 122 (2013) no. 3-4, p. 215 | DOI:10.1007/s00703-013-0283-3
- Monte Carlo tests of nucleation concepts in the lattice gas model, Physical Review E, Volume 87 (2013) no. 5 | DOI:10.1103/physreve.87.053302
- An isotopic analysis of ionising radiation as a source of sulphuric acid, Atmospheric Chemistry and Physics, Volume 12 (2012) no. 12, p. 5319 | DOI:10.5194/acp-12-5319-2012
- Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth, Atmospheric Chemistry and Physics, Volume 12 (2012) no. 20, p. 9427 | DOI:10.5194/acp-12-9427-2012
- Influence of furnace temperature and residence time on configurations of carbon black, Chemical Engineering Journal, Volume 200-202 (2012), p. 541 | DOI:10.1016/j.cej.2012.06.061
- Nucleation and Growth of Nanoparticles in the Atmosphere, Chemical Reviews, Volume 112 (2012) no. 3, p. 1957 | DOI:10.1021/cr2001756
- On the stability of ion water clusters at atmospheric conditions: Open system Monte Carlo simulation, The Journal of Chemical Physics, Volume 137 (2012) no. 12 | DOI:10.1063/1.4754528
- Diffusivity in water and fluorescence properties of organic nanoparticles produced in flames, Applied Physics B, Volume 102 (2011) no. 4, p. 711 | DOI:10.1007/s00340-011-4459-6
- Impact of deep convection in the tropical tropopause layer in West Africa: in-situ observations and mesoscale modelling, Atmospheric Chemistry and Physics, Volume 11 (2011) no. 1, p. 201 | DOI:10.5194/acp-11-201-2011
- New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities, Atmospheric Chemistry and Physics, Volume 11 (2011) no. 13, p. 6207 | DOI:10.5194/acp-11-6207-2011
- In situ observations of new particle formation in the tropical upper troposphere: the role of clouds and the nucleation mechanism, Atmospheric Chemistry and Physics, Volume 11 (2011) no. 18, p. 9983 | DOI:10.5194/acp-11-9983-2011
- Performance of a corona ion source for measurement of sulfuric acid by chemical ionization mass spectrometry, Atmospheric Measurement Techniques, Volume 4 (2011) no. 3, p. 437 | DOI:10.5194/amt-4-437-2011
- Aerosol nucleation induced by a high energy particle beam, Geophysical Research Letters, Volume 38 (2011) no. 9 | DOI:10.1029/2011gl047036
- Composition of negative air ions as a function of ion age and selected trace gases: Mass- and mobility distribution, Journal of Aerosol Science, Volume 42 (2011) no. 11, p. 820 | DOI:10.1016/j.jaerosci.2011.07.007
- Monte Carlo Methods for Estimating Interfacial Free Energies and Line Tensions, Journal of Statistical Physics, Volume 144 (2011) no. 3, p. 690 | DOI:10.1007/s10955-011-0226-7
- A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls, Atmospheric Environment, Volume 44 (2010) no. 39, p. 5035 | DOI:10.1016/j.atmosenv.2010.08.016
- Enhanced organic mass fraction and decreased hygroscopicity of cloud condensation nuclei (CCN) during new particle formation events, Geophysical Research Letters, Volume 37 (2010) no. 3 | DOI:10.1029/2009gl040930
- Formation of Fine Ni Nanoparticle by Plasma-Induced Cathodic Discharge Electrolysis Using Rotating Disk Anode, Journal of The Electrochemical Society, Volume 157 (2010) no. 10, p. E162 | DOI:10.1149/1.3468833
- Evidence for the role of organics in aerosol particle formation under atmospheric conditions, Proceedings of the National Academy of Sciences, Volume 107 (2010) no. 15, p. 6646 | DOI:10.1073/pnas.0911330107
- Plasma-induced cathodic discharge electrolysis to form various metal/alloy nanoparticles, Russian Journal of Electrochemistry, Volume 46 (2010) no. 6, p. 619 | DOI:10.1134/s1023193510060042
- Experimental evaluation of the pressure and temperature dependence of ion-induced nucleation, The Journal of Chemical Physics, Volume 133 (2010) no. 12 | DOI:10.1063/1.3490354
- Characterization of a Modified Expansion Condensation Particle Counter for Detection of Nanometer-Sized Particles, Aerosol Science and Technology, Volume 43 (2009) no. 8, p. 767 | DOI:10.1080/02786820902922894
- Evidence for ice particles in the tropical stratosphere from in-situ measurements, Atmospheric Chemistry and Physics, Volume 9 (2009) no. 18, p. 6775 | DOI:10.5194/acp-9-6775-2009
- An investigation of nucleation events in a coastal urban environment in the Southern Hemisphere, Atmospheric Chemistry and Physics, Volume 9 (2009) no. 20, p. 7877 | DOI:10.5194/acp-9-7877-2009
- Street Versus Rooftop Level Concentrations of Fine Particles in a Cambridge Street Canyon, Boundary-Layer Meteorology, Volume 131 (2009) no. 1, p. 3 | DOI:10.1007/s10546-008-9300-3
- Synthesis of Magnetic Nanoparticles (Fe and FePt) by Plasma-Induced Cathodic Discharge Electrolysis, IEEE Transactions on Plasma Science, Volume 37 (2009) no. 7, p. 1156 | DOI:10.1109/tps.2009.2015228
- Synthesis of Ni nanoparticles by plasma-induced cathodic discharge electrolysis, Journal of Applied Electrochemistry, Volume 39 (2009) no. 10, p. 1665 | DOI:10.1007/s10800-009-9856-8
- Molecular Dynamics Based Analysis of Nucleation and Surface Energy of Droplets in Supersaturated Vapors of Methane and Ethane, Journal of Heat Transfer, Volume 131 (2009) no. 4 | DOI:10.1115/1.3072909
- Heterogeneous nucleation at a wall near a wetting transition: a Monte Carlo test of the classical theory, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 46, p. 464118 | DOI:10.1088/0953-8984/21/46/464118
- Monte Carlo Test of the Classical Theory for Heterogeneous Nucleation Barriers, Physical Review Letters, Volume 103 (2009) no. 22 | DOI:10.1103/physrevlett.103.225703
- Applicability of condensation particle counters to measure atmospheric clusters, Atmospheric Chemistry and Physics, Volume 8 (2008) no. 14, p. 4049 | DOI:10.5194/acp-8-4049-2008
- The role of atmospheric ions in aerosol nucleation – a review, Atmospheric Chemistry and Physics, Volume 8 (2008) no. 16, p. 4911 | DOI:10.5194/acp-8-4911-2008
- Rural continental aerosol properties and processes observed during the Hohenpeissenberg Aerosol Characterization Experiment (HAZE2002), Atmospheric Chemistry and Physics, Volume 8 (2008) no. 3, p. 603 | DOI:10.5194/acp-8-603-2008
- Tropospheric New Particle Formation and the Role of Ions, Planetary Atmospheric Electricity, Volume 30 (2008), p. 241 | DOI:10.1007/978-0-387-87664-1_15
- Tropospheric New Particle Formation and the Role of Ions, Space Science Reviews, Volume 137 (2008) no. 1-4, p. 241 | DOI:10.1007/s11214-008-9388-2
- Phase composition and morphology of TaC coating on carbon fibers by chemical vapor infiltration, Thin Solid Films, Volume 516 (2008) no. 23, p. 8248 | DOI:10.1016/j.tsf.2008.03.016
Cité par 101 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier