[Nucléation de nouvelles particules dans l'atmosphère]
Une fraction significative du nombre total de particules présentes dans l'atmosphère est formée initialement par nucléation homogène à partir de la phase gazeuse. La nucléation binaire de l'acide sulfurique et de l'eau, la nucléation ternaire de l'acide sulfurique, de l'eau et de l'ammoniac, enfin la nucléation induite par les ions, sont vraisemblablement les processus de nucléation les plus importants dans le contexte des aérosols atmosphériques. Au cours des vingt dernières années, l'amélioration considérable des instruments de mesure a permis de nombreuses observations et caractérisations de la nucléation y compris la quantification du taux de nucléation, la caractérisation de la croissance et les premières caractérisations des nanoparticules dès leur formation. La nucléation a été observée en différents points de l'atmosphère : dans la couche limite, dans la troposphère libre, dans des zones éloignées de toute pollution, dans les zones côtières, dans les forêts boréales comme dans les zones urbaines et leurs panaches de pollution. Dans la plupart des cas, il est suggéré que l'acide sulfurique gazeux est le gaz précurseur essentiel. Après la nucléation, d'autres substances, notamment des composés organiques à basse pression de vapeur saturante, jouent souvent un rôle dans la croissance des aérosols. Les oxydes d'iode semblent responsables de la nucléation observée dans certaines zones côtières. De récents progrès théoriques permettent désormais un traitement cinétique du processus de nucléation, basé sur les caractéristiques thermochimiques mesurées de la formation des agrégats moléculaires. Cette approche représente une amélioration considérable par rapport au traitement classique de la nucléation.
Il est nécessaire de comprendre en détail les mécanismes de nucléation des aérosols atmosphériques, car les particules fraîchement formées influent directement sur la concentration et la distribution en tailles des aérosols atmosphériques. La formation des nuages et les précipitations en sont affectées, influençant le climat. Les émissions anthropiques influent fortement sur les processus de nucléation.
Malgré des efforts de recherche de grande envergure, il reste des incohérences substantielles, les études de laboratoire restant en désaccord avec les modélisations comme avec les observations sur le terrain. Quelques questions cruciales restent à résoudre en ce qui concerne la possibilité de prédire la nucléation atmosphérique de façon générale, en ce qui concerne les substances jouant un rôle dans la nucléation, puis dans la croissance, et en ce qui concerne la taille et la composition de l'agrégat critique.
A significant fraction of the total number of particles present in the atmosphere is formed originally by nucleation from the gas phase. Binary nucleation of sulphuric acid and water, ternary nucleation of sulphuric acid, water and ammonia and ion-induced nucleation are thought to be the most important aerosol nucleation processes in the atmosphere. Within the last two decades, instrumentation to observe and characterize nucleation has improved greatly and numerous observations of nucleation have been made including quantification of the nucleation rate, characterization of the growth process and first chemical characterizations of the freshly formed particles. Nucleation has been observed at many different places in the atmosphere: in the boundary layer, in the free troposphere, in remote locations, in coastal areas, in boreal forests as well as urban areas and pollution plumes. In most cases gaseous sulphuric acid is assumed to be the key precursor gas. After nucleation, other supersaturated substances, especially low vapour pressure organics often take part in the subsequent aerosol growth. Iodine oxides seem to be responsible for nucleation observed in some coastal areas.
Recent advances in modelling allow for a kinetic treatment of the nucleation process based on measured thermochemical data for the cluster formation. Considerable improvement over the classical nucleation treatment is expected from this approach.
A detailed understanding of atmospheric aerosol nucleation processes is needed as the freshly formed particles directly influence the number concentration and size distribution of the atmospheric aerosol. The formation of clouds and precipitation is affected and influences on climate are anticipated. Anthropogenic emissions influence atmospheric aerosol nucleation processes considerably.
Despite the comprehensive research efforts, substantial inconsistencies remain and conflicting results of laboratory studies, model studies as well as atmospheric observations persist. Several key questions about the predictability of atmospheric nucleation in general, about the substances, that take part in nucleation and subsequent growth and about the size and composition of the critical cluster, have not been resolved so far.
Mot clés : Aérosols, Nucléation, Particules, Clusters, Atmosphère
Joachim Curtius 1
@article{CRPHYS_2006__7_9-10_1027_0, author = {Joachim Curtius}, title = {Nucleation of atmospheric aerosol particles}, journal = {Comptes Rendus. Physique}, pages = {1027--1045}, publisher = {Elsevier}, volume = {7}, number = {9-10}, year = {2006}, doi = {10.1016/j.crhy.2006.10.018}, language = {en}, }
Joachim Curtius. Nucleation of atmospheric aerosol particles. Comptes Rendus. Physique, Volume 7 (2006) no. 9-10, pp. 1027-1045. doi : 10.1016/j.crhy.2006.10.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.10.018/
[1] Aerosol Technology—Properties, Behaviour, and Measurement of Airborne Particles, John Wiley & Sons, Inc., New York, 1998
[2] Atmospheric Chemistry and Physics—From Air Pollution to Climate Change, John Wiley & Sons, Inc., New York, 1998
[3] Formation and growth rates of ultrafine atmospheric particles: a review of observations, J. Aerosol Sci., Volume 35 (2004), pp. 143-176
[4] et al. Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements, Atmos. Chem. Phys., Volume 5 (2005), pp. 3053-3069
[5] Tropospheric aerosols (P.V. Hobbs, ed.), Aerosol-Cloud-Climate Interactions, Academic Press, San Diego, CA, 1993, pp. 1-31
[6] et al. Coastal new particle formation: Environmental conditions and aerosol physicochemical characteristics during nucleation bursts, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8107 | DOI
[7] Strong present-day aerosol cooling implies a hot future, Nature, Volume 435 (2005), pp. 1187-1190
[8] et al. Aerosols, their direct and indirect effect (J.T. Houghton et al., eds.), Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, Cambridge, United Kingdom, New York, NY, USA, 2001, p. 881
[9] Global estimate of aerosol direct radiative forcing from satellite measurements, Nature, Volume 438 (2005), pp. 1138-1141
[10] et al. A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., Volume 6 (2006), pp. 613-666
[11] Global indirect aerosol effects: a review, Atmos. Chem. Phys., Volume 5 (2005), pp. 715-737
[12] Climate forcing by aerosols—a hazy picture, Science, Volume 300 (2003), pp. 1103-1104
[13] Formation of sulphuric acid aerosols and cloud condensation nuclei: An expression for significant nucleation and model comparison, J. Aerosol Sci., Volume 30 (1999), pp. 1079-1094
[14] Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science, Volume 312 (2006), pp. 1375-1378
[15] The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales, Atmos. Chem. Phys. Discuss., Volume 6 (2006), pp. 7323-7368
[16] Air pollution-related illness: Effects of particles, Science, Volume 308 (2005), pp. 804-806
[17] Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution, J. Amer. Medical Assoc., Volume 287 (2002), pp. 1132-1141
[18] Health effects of outdoor air pollution, Amer. J. Respiratory Critical Care Medicine, Volume 153 (1996), pp. 3-50
[19] Epidemiological evidence on health effects of ultrafine particles, Journal of Aerosol Medicine-Deposition Clearance and Effects in the Lung, Volume 15 (2002), pp. 189-201
[20] On the vapor pressure of sulfuric acid, Geophys. Res. Lett., Volume 7 (1980), pp. 433-436
[21] H2SO4 vapor pressure of sulfuric acid and ammonium sulfate solutions, J. Geophys. Res.—Atmospheres, Volume 102 (1997), pp. 3725-3735
[22] Particle formation in the upper tropical troposphere—a source of nuclei for the stratospheric aerosol, Science, Volume 270 (1995), pp. 1650-1653
[23] Aerosol production and growth in the upper free troposphere, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 24751-24762
[24] Aircraft observations of the upper tropospheric fine particle aerosol in the Northern and Southern Hemispheres at midlatitudes, Geophys. Res. Lett., Volume 30 (2003), p. 1503 | DOI
[25] Meridional distributions of aerosol particle number concentrations in the upper troposphere and lower stratosphere obtained by Civil Aircraft for Regular Investigation of the Atmosphere Based on an Instrument Container (CARIBIC) flights, J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 4114 | DOI
[26] New particle formation in the remote troposphere: A comparison of observations at various sites, Geophys. Res. Lett., Volume 26 (1999), pp. 307-310
[27] Nucleation in the equatorial free troposphere: Favorable environments during PEM-tropics, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 5735-5744
[28] et al. Overview of the international project on biogenic aerosol formation in the boreal forest (BIOFOR), Tellus B, Volume 53 (2001), pp. 324-343
[29] Observations of ultrafine aerosol particle formation and growth in boreal forest, Geophys. Res. Lett., Volume 24 (1997), pp. 1219-1222
[30] Secondary organic aerosol formation vs primary organic aerosol emission: In situ evidence for the chemical coupling between monoterpene acidic photooxidation products and new particle formation over forests, Environ. Sci. Tech., Volume 33 (1999), pp. 1028-1037
[31] A case study of gas-to-particle conversion in an eastern Canadian forest, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 8095-8111
[32] Observations of particle formation and growth in a mountainous forest region in central Europe, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D23204 | DOI
[33] On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett., Volume 26 (1999), pp. 1707-1710
[34] A study of new particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. Geophys. Res.—Atmospheres, Volume 103 (1998), pp. 16385-16396
[35] Preface to topical collection on new particle formation in Atlanta, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D22S01
[36] Nucleation events during the Pittsburgh air quality study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Tech., Volume 38 (2004), pp. 253-264
[37] Particle growth in the plumes of coal-fired power plants, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4155 | DOI
[38] Ultrafine particle size distributions measured in aircraft exhaust plumes, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 26555-26567
[39] et al. New particle formation in anthropogenic plumes advecting from Asia observed during TRACE-P, J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 8814 | DOI
[40] How important is nucleation in regional/global modelling?, Geophys. Res. Lett., Volume 31 (2004), p. L12109 | DOI
[41] Global sulfur emissions from 1850 to 2000, Chemosphere, Volume 58 (2005), pp. 163-175
[42] An improved model for hydrate formation in sulfuric acid–water nucleation, J. Chem. Phys., Volume 116 (2002), pp. 218-228
[43] An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4622 | DOI
[44] Binary H2SO4–H2O homogeneous nucleation based on kinetic quasi-unary nucleation model: Look-up tables, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D04201 | DOI
[45] Measurement of the thermodynamics of the hydrated dimer and trimer of sulfuric acid, J. Phys. Chem. A, Volume 110 (2006), pp. 9525-9528
[46] A preliminary-study of the effect of ammonia on particle nucleation in the marine boundary-layer, J. Geophys. Res.—Atmospheres, Volume 100 (1995), pp. 7147-7160
[47] Measured atmospheric new particle formation rates: Implications for nucleation mechanisms, Chem. Engrg. Commun., Volume 151 (1996), pp. 53-64
[48] Ternary nucleation of H2SO4, NH3, and H2O in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 26349-26353
[49] Effect of ammonia on new particle formation: A kinetic H2SO4–H2O–NH3 nucleation model constrained by laboratory measurements, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D01204 | DOI
[50] From molecular clusters to nanoparticles: Role of ambient ionization in tropospheric aerosol formation, J. Geophys. Res.—Atmospheres, Volume 106 (2001), pp. 4797-4814
[51] Model studies on ion-induced nucleation in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4427 | DOI
[52] Massive positive and negative chemiions in the exhaust of an aircraft jet engine at ground-level: mass distribution measurements and implications for aerosol formation, Atmos. Environ., Volume 36 (2002), pp. 1821-1825
[53] et al. New particle formation observed in the tropical/subtropical cirrus clouds, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D20209 | DOI
[54] Atmospheric ion-induced nucleation of sulfuric acid and water, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D08204 | DOI
[55] Tropospheric ionization and aerosol production: A model study, J. Geophys. Res.—Atmospheres, Volume 109 (2004), p. D19206 | DOI
[56] Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, Nature, Volume 406 (2000), pp. 611-614
[57] Production of ice in tropospheric clouds—a review, Bull. Amer. Meteorolog. Soc., Volume 86 (2005), pp. 795-807
[58] Keimbildung in übersättigten Gebilden, Z. Phys. Chem., Volume 119 (1926), pp. 277-301
[59] Keimbildungsgeschwindigkeit in übersättigten Dämpfen, Z. Phys. Chem., Volume 125 (1927), pp. 236-242
[60] On the relationship between nucleation work, nucleus size and nucleation rate, J. Chem. Phys., Volume 76 (1982), pp. 5098-5102
[61] Measurement of the molecular content of binary nuclei—use of the nucleation rate surface for ethanol–hexanol, J. Chem. Phys., Volume 99 (1993), pp. 4693-4704
[62] Homogeneous nucleation rates for water, J. Chem. Phys., Volume 99 (1993), pp. 4680-4692
[63] Laboratory studies of particle nucleation: Initial results for H2SO4, H2O, and NH3 vapors, J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 23709-23718
[64] The kinetics of phase transition in binary systems, J. Chem. Phys., Volume 18 (1950), pp. 840-848
[65] Self-nucleation in the sulfuric acid–water system, J. Chem. Phys., Volume 35 (1961), pp. 795-799
[66] Heteromolecular nucleation in the sulfuric acid–water system, Atmos. Environ., Volume 23 (1988), pp. 2053-2057
[67] Stable sulphate clusters as a source of new atmospheric particles, Nature, Volume 404 (2000), pp. 66-69
[68] On a method of making visible the paths of ionising particles through a gas, Proceedings of the Royal Society of London Series a—Containing Papers of a Mathematical and Physical Character, Volume 85 (1911), pp. 285-288
[69] Conduction of Electricity Through Gases, Cambridge Univ. Press, Cambridge, 1906
[70] Cosmic rays, clouds, and climate, Science, Volume 298 (2002), pp. 1732-1737
[71] Binary nucleation in acid water-systems 2. Sulfuric-acid water and a comparison with methanesulfonic-acid water, J. Chem. Phys., Volume 94 (1991), pp. 6842-6850
[72] Cluster ion thermal decomposition (I): Experimental kinetics study and ab initio calculations for HSO4–(H2SO4)(x)(HNO3)(y), J. Phys. Chem. A, Volume 105 (2001), pp. 10867-10873
[73] Cluster ion thermal decomposition (II): Master equation modeling in the low-pressure limit and fall-off regions. Bond energies for HSO4–(H2SO4)(x)(HNO3)(y), J. Phys. Chem. A, Volume 105 (2001), pp. 10874-10883
[74] Thermodynamic measurements of H2SO4/H2O molecular cluster ions., Abstracts of Papers of the Amer. Chem. Soc., Volume 224 (2002), p. U329
[75] Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 2. Measurements and ab initio structures of negative ions, J. Phys. Chem. A, Volume 107 (2003), pp. 9812-9824
[76] Experimental thermodynamics of cluster ions composed of H2SO4 and H2O 1. Positive ions, J. Phys. Chem. A, Volume 107 (2003), pp. 9800-9811
[77] J. Curtius, E.R. Lovejoy, K.D. Froyd, Atmospheric ion-induced aerosol nucleation, Space Sci. Rev. (2006), in press
[78] Parametrization of ternary nucleation rates for H2SO4–NH3–H2O vapors, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4381 | DOI
[79] A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D19205 | DOI
[80] Evaluating aerosol nucleation parameterizations in a global atmospheric model, Geophys. Res. Lett., Volume 33 (2006), p. L10808 | DOI
[81] Nucleation—measurements, theory, and atmospheric applications, Annu. Rev. Phys. Chem., Volume 46 (1995), pp. 489-524
[82] Measurement of the gas-phase concentration of H2SO4 and methane sulfonic-acid and estimates of H2SO4 production and loss in the atmosphere, J. Geophys. Res.—Atmospheres, Volume 98 (1993), pp. 9001-9010
[83] The contribution of sulphuric acid to atmospheric particle formation and growth: a comparison between boundary layers in Northern and Central Europe, Atmos. Chem. Phys., Volume 5 (2005), pp. 1773-1785
[84] The history of condensation nucleus counters, Aerosol Sci. Tech., Volume 33 (2000), pp. 297-322
[85] An ultrafine aerosol condensation nucleus counter, Aerosol Sci. Tech., Volume 14 (1991), pp. 48-65
[86] Characterization of an automated, water-based expansion condensation nucleus counter for ultrafine particles, Aerosol Sci. Tech., Volume 39 (2005), pp. 1174-1183
[87] Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nanoparticle (similar to 3–10 nm) size distributions, J. Aerosol Sci., Volume 29 (1998), pp. 601-615
[88] Aerosol classification by electric mobility: Apparatus, theory, and application, J. Aerosol Sci., Volume 6 (1975), pp. 443-451
[89] History of electrical aerosol measurements, Aerosol Sci. Technol., Volume 28 (1998), pp. 301-380
[90] A review of atmospheric aerosol measurements, Atmos. Environ., Volume 34 (2000), pp. 1959-1999
[91] A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm, J. Aerosol Sci., Volume 22 (1991), pp. 289-296
[92] Performance of Vienna type differential mobility analyzer at 1.2–20 nanometer, Aerosol Sci. Tech., Volume 27 (1997), pp. 651-672
[93] Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8110 | DOI
[94] Iodine oxide homogeneous nucleation: An explanation for coastal new particle production, Geophys. Res. Lett., Volume 28 (2001), pp. 1949-1952
[95] Thermal desorption chemical ionization mass spectrometer for ultrafine particle chemical composition, Aerosol Sci. Tech., Volume 37 (2003), pp. 471-475
[96] Chemical composition of atmospheric nanoparticles during nucleation events in Atlanta, J. Geophys. Res.—Atmospheres, Volume 110 (2005), p. D22S03 | DOI
[97] Chemical characterization of individual, airborne sub-10-nm particles and molecules, Analyt. Chem., Volume 78 (2006), pp. 1750-1754
[98] Aerosol formation—Atmospheric particles from organic vapours, Nature, Volume 416 (2002), pp. 497-498
[99] The use of the pulse height analyser ultrafine condensation particle counter (PHA-UCPC) technique applied to sizing of nucleation mode particles of differing chemical composition, J. Aerosol Sci., Volume 35 (2004), pp. 205-216
[100] Rapid formation of sulfuric acid particles at near-atmospheric conditions, Science, Volume 307 (2005), pp. 698-700
[101] New particle formation from photooxidation of diiodomethane (CH2I2), J. Geophys. Res.—Atmospheres, Volume 108 (2003), p. 4318 | DOI
[102] Experiments on gas–liquid nucleation of sulfuric acid and wafer, J. Chem. Phys., Volume 107 (1997), pp. 920-926
[103] An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions, Atmos. Chem. Phys., Volume 6 (2006), pp. 2927-2942
[104] Occurrence of an ultrafine particle mode less than 20 nm in diameter in the marine boundary layer during Arctic summer and autumn, Tellus B, Volume 48 (1996), pp. 213-222
[105] Aerosol number size distributions from 3 to 500 nm diameter in the arctic marine boundary layer during summer and autumn, Tellus B, Volume 48 (1996), pp. 197-212
[106] Determination of nucleation and growth rates from observation of a SO2 induced atmospheric nucleation event, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 4123 | DOI
[107] Seasonal and diurnal variation of aerosol size distributions () at a high-alpine site (Jungfraujoch 3580 m asl), J. Geophys. Res.—Atmospheres, Volume 104 (1999), pp. 26809-26820
[108] et al. Night-time formation and occurrence of new particles associated with orographic clouds, Atmos. Environ., Volume 31 (1997), pp. 2545-2559
[109] Evolution of particle concentration and size distribution observed upwind, inside and downwind hill cap clouds at connected flow conditions during FEBUKO, Atmos. Environ., Volume 39 (2005), pp. 4233-4245
[110] The mechanism of the HO–SO2 reaction, Atmos. Environ., Volume 17 (1983), pp. 2231-2235
[111] Kinetics and products of the gas-phase reaction of SO3 with water, J. Phys. Chem., Volume 100 (1996), pp. 19911-19916
[112] Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, Atmos. Chem. Phys., Volume 6 (2006), pp. 787-793
[113] Measurements of new particle formation and ultrafine particle growth rates at a clean continental site, J. Geophys. Res.—Atmospheres, Volume 102 (1997), pp. 4375-4385
[114] Particle formation by ion nucleation in the upper troposphere and lower stratosphere, Science, Volume 301 (2003), pp. 1886-1889
[115] Balloon-borne measurements of aerosol, condensation nuclei, and cloud particles in the stratosphere at Mcmurdo station, Antarctica, during the spring of 1987, J. Geophys. Res.—Atmospheres, Volume 94 (1989), pp. 11253-11269
[116] Measurement of the condensation nuclei profile to 31 km in the Arctic in January 1989 and comparisons with Antarctic measurements, Geophys. Res. Lett., Volume 17 (1990), pp. 357-360
[117] Observations of condensation nuclei in the airborne Antarctic ozone experiment—implications for new particle formation and polar stratospheric cloud formation, J. Geophys. Res.—Atmospheres, Volume 94 (1989), pp. 16437-16448
[118] Measurements of condensation nuclei in the airborne Arctic stratospheric expedition—observations of particle-production in the polar vortex, Geophys. Res. Lett., Volume 17 (1990), pp. 361-364
[119] Origin of condensation nuclei in the springtime polar stratosphere, J. Geophys. Res.—Atmospheres, Volume 100 (1995), pp. 5215-5227
[120] Bursts of intermediate ions in atmospheric air, J. Geophys. Res.—Atmospheres, Volume 103 (1998), pp. 13909-13915
[121] Annual and size dependent variation of growth rates and ion concentrations in boreal forest, Boreal Environ. Res., Volume 10 (2005), pp. 357-369
[122] Cosmic ray-induced aerosol-formation: First observational evidence from aircraft-based ion mass spectrometer measurements in the upper troposphere, Geophys. Res. Lett., Volume 29 (2002), p. 1698 | DOI
[123] Detection of massive negative chemiions in the exhaust plume of a jet aircraft in flight, Geophys. Res. Lett., Volume 26 (1999), pp. 1577-1580
[124] Chemiion concentration measurements in jet engine exhaust at the ground: Implications for ion chemistry and aerosol formation in the wake of a jet aircraft, Geophys. Res. Lett., Volume 27 (2000), pp. 1723-1726
[125] Negative atmospheric ions and their potential role in ion-induced nucleation, J. Geophys. Res.—Atmospheres, Volume 111 (2006), p. D04305 | DOI
[126] et al. A dedicated study of new Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements, J. Geophys. Res.—Atmospheres, Volume 107 (2002), p. 8108 | DOI
[127] Iodine oxide in the marine boundary layer, Nature, Volume 397 (1999), pp. 572-573
[128] Observations of OIO in the remote marine boundary layer, Geophys. Res. Lett., Volume 28 (2001), pp. 1945-1948
[129] Observations of iodine monoxide in the remote marine boundary layer, J. Geophys. Res.—Atmospheres, Volume 105 (2000), pp. 14363-14369
[130] et al. Direct evidence for coastal iodine particles from Laminaria macroalgae—linkage to emissions of molecular iodine, Atmos. Chem. Phys., Volume 4 (2004), pp. 701-713
[131] Absolute absorption cross-section and photolysis rate of I-2, Atmos. Chem. Phys., Volume 4 (2004), pp. 1443-1450
[132] Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation, Atmos. Chem. Phys., Volume 6 (2006), pp. 883-895
[133] Coastal new particle formation: A review of the current state-of-the-art, Environ. Chem., Volume 2 (2005), pp. 245-255
[134] Blue hazes in the atmosphere, Nature, Volume 187 (1960), pp. 641-643
[135] Analysis of the growth of nucleation mode particles observed in Boreal forest, Tellus B, Volume 50 (1998), pp. 449-462
[136] New particle formation in the continental boundary layer: Meteorological and gas phase parameter influence, Geophys. Res. Lett., Volume 27 (2000), pp. 3325-3328
[137] et al. Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., Volume 5 (2005), pp. 1053-1123
[138] Gas-phase terpene oxidation products: a review, Atmos. Environ., Volume 33 (1999), pp. 1423-1439
[139] Formation of organic aerosols from the oxidation of biogenic hydrocarbons, J. Atmos. Chem., Volume 26 (1997), pp. 189-222
[140] Products and mechanism of the gas phase reaction of ozone with beta-pinene, J. Atmos. Chem., Volume 35 (1999), pp. 165-197
[141] Cis-pinic acid, a possible precursor for organic aerosol formation from ozonolysis of alpha-pinene, Atmos. Environ., Volume 32 (1998), pp. 1657-1661
[142] Formation and gas/particle partitioning of monoterpenes photo-oxidation products over forests, Geophys. Res. Lett., Volume 26 (1999), pp. 55-58
[143] The atmospheric aerosol-forming potential of whole gasoline vapor, Science, Volume 276 (1997), pp. 96-99
[144] Identification of polymers as major components of atmospheric organic aerosols, Science, Volume 303 (2004), pp. 1659-1662
[145] Atmospheric new particle formation enhanced by organic acids, Science, Volume 304 (2004), pp. 1487-1490
[146] Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., Volume 30 (2003), p. 1585 | DOI
[147] Evidence for low-volatility diacyl peroxides as a nucleating agent and major component of aerosol formed from reactions of O-3 with cyclohexene and homologous compounds, J. Phys. Chem. A, Volume 106 (2002), pp. 4390-4402
[148] Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy dilemma?, Climatic Change, Volume 77 (2006), pp. 211-219
[149] Nucleation events in the continental boundary layer: Influence of physical and meteorological parameters, Atmos. Chem. Phys., Volume 2 (2002), pp. 1-16
[150] Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys., Volume 4 (2004) no. 1, pp. 19-34
Cité par Sources :
Commentaires - Politique