Comptes Rendus
Neutron scattering/Diffusion de neutrons
Mapping residual and internal stress in materials by neutron diffraction
Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 806-820.

Neutron diffraction provides one of the few means of mapping residual stresses deep within the bulk of materials and components. This article reviews the basic scientific methodology by which internal strains and stresses are inferred from recorded diffraction peaks. Both conventional angular scans and time-of-flight measurements are reviewed and compared. Their complementarity with analogous synchrotron X-ray methods is also highlighted. For measurements to be exploited in structural integrity calculations underpinning the safe operation of engineering components, measurement standards have been defined and the major findings are summarised. Examples are used to highlight the unique capabilities of the method showing how it can provide insights ranging from the basic physics of slip mechanisms in hexagonal polycrystalline materials, through the materials optimisation of stress induced transformations in smart nanomaterials, to the industrial introduction of novel friction welding processes exploiting stress residual measurements transferred from prototype sub-scale tests to the joining of full-scale aeroengine assemblies.

La diffraction de neutrons est une des rares techniques permettant de cartographier en profondeur les contraintes résiduelles dans les matériaux. Cet article présente une revue des bases de la méthodologie scientifique qui permet de déduire les déformations et contraintes internes des mesures de pics de diffraction. Les méthodes conventionnelles par balayage en fonction de l'angle et les mesures par temps de vol sont décrites et comparées. On insiste sur leur complémentarité avec les méthodes analogues utilisant le rayonnement synchrotron. Pour que ces mesures puissent être utilisées dans les calculs d'intégrité structurale nécessaires à une utilisation sûre des composants mécaniques, une méthodologie standard a été définie et est résumée ici. Des exemples mettent en valeur le potentiel unique de la méthode, montrant comment elle permet d'obtenir des informations allant des mécanismes de base du glissement dans les matériaux hexagonaux polycristallins, à l'optimisation de matériaux par des transformations structurales induites par les contraintes, et à la validation industrielle des nouveaux procédés de soudage par friction appliqués aux assemblages de composants aéronautiques.

Published online:
DOI: 10.1016/j.crhy.2007.09.015
Keywords: Residual stress, Structural integrity, Neutron diffraction, Smart materials, Composites, Welding
Mot clés : Contraintes résiduelles, Intégrité structurale, Diffraction de neutrons, Soudage

Philip J. Withers 1

1 Manchester Materials Science, University of Manchester, Grosvenor St., Manchester, M1 7HS, UK
@article{CRPHYS_2007__8_7-8_806_0,
     author = {Philip J. Withers},
     title = {Mapping residual and internal stress in materials by neutron diffraction},
     journal = {Comptes Rendus. Physique},
     pages = {806--820},
     publisher = {Elsevier},
     volume = {8},
     number = {7-8},
     year = {2007},
     doi = {10.1016/j.crhy.2007.09.015},
     language = {en},
}
TY  - JOUR
AU  - Philip J. Withers
TI  - Mapping residual and internal stress in materials by neutron diffraction
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 806
EP  - 820
VL  - 8
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.015
LA  - en
ID  - CRPHYS_2007__8_7-8_806_0
ER  - 
%0 Journal Article
%A Philip J. Withers
%T Mapping residual and internal stress in materials by neutron diffraction
%J Comptes Rendus. Physique
%D 2007
%P 806-820
%V 8
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2007.09.015
%G en
%F CRPHYS_2007__8_7-8_806_0
Philip J. Withers. Mapping residual and internal stress in materials by neutron diffraction. Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 806-820. doi : 10.1016/j.crhy.2007.09.015. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.015/

[1] W.H. Bragg Proc. Roy. Soc., 89A (1913), pp. 246-248 (8–77)

[2] H.H. Lester; R.H. Aborn Army Ordnance, 6 (1925), pp. 120-127 (200–207, 83–87, 364–369)

[3] A.E. van Arkel Physica B, 5 (1925), pp. 208-212

[4] A.F. Joffe; M.V. Kirpitcheva Phil. Mag., 43 (1922), pp. 204-206

[5] V. Hauk Structural and Residual Stress Analysis by Non-Destructive Methods, Elsevier Science B.V., Oxford, 1997

[6] A.J. Allen; C. Andreani; M.T. Hutchings; C.G. Windsor NDT International, 15 (1981), pp. 249-254

[7] L. Pintschovius, V. Jung, E. Macherauch, R. Schäfer, O. Vöhringer, In: E. Kula, V. Weiss (Eds.), Residual Stress and Stress Relaxation, Proceedings of the 28th Army Materials Research Conference, 1981 July, Lake Placid, Plenum, New York, pp. 467–482

[8] A.D. Krawitz, J.E. Brune, M.J. Schmank, In: E. Kula, V. Weiss (Eds.), Residual Stress and Stress Relaxation, Proceedings of the 28th Army Materials Research Conference, 1981 July, Lake Placid, Plenum, New York, pp. 139–155

[9] M.T. Hutchings; P.J. Withers; T.M. Holden; T. Lorentzen Introduction to the Characterisation of Residual Stresses by Neutron Diffraction, CRC Press, Taylor & Francis, London, 2005

[10] Measurement of Residual and Applied Stress Using Neutron Diffraction (M.T. Hutchings; A.D. Krawitz, eds.), NATO ASI Series E Applied Science, vol. 216, Kluwer Academic Publishers, Dordrecht, 1992

[11] A.D. Krawitz; T.M. Holden MRS Bull., XV (1990), pp. 57-64

[12] J.L. Lebrun; P. Gergaud; V. Ji; M. Belassel J. de Physique, IV (1995), pp. 265-268

[13] P.J. Withers; M. Preuss; P.J. Webster; D.J. Hughes; A.M. Korsunsky Materials Sci. Forum (ECRSV), 404–407 (2002), pp. 1-10

[14] P.J. Withers Encyclopedia of Materials: Science & Technology (K.H.J. Buschow; R.W. Cahn; M.C. Flemings; B. Ilschner; E.J. Kramer; S. Mahajan, eds.), Elsevier, Oxford, 2001, pp. 8158-8170

[15] T. Pirling; G. Bruno; P.J. Withers Mat. Sci. Eng., 437A (2006), pp. 139-144

[16] R.P. Schneider, T. Poeste, H. Freydank, M. Hofmann, in: Measurement of Residual Stress in Materials Using Neutrons, 2005, Vienna, Int. Atomic Energy Agency; IAEA-TECDOC-1457, pp. 61–70

[17] P. Mikula, M. Vrána, P. Lukáš, in: Measurement of Residual Stress in Materials Using Neutrons, 2005, Vienna, Int. Atomic Energy Agency; IAEA-TECDOC-1457, pp. 19–27

[18] T. Holden; A.D. Krawitz; I. Anderson Journal of Metals, 58 (2006), pp. 64-67

[19] A.G. Youtsos, in: Measurement of Residual Stress in Materials Using Neutrons, 2005, Vienna, Int. Atomic Energy Agency; IAEA-TECDOC-1457, pp. 33–50

[20] M. Ceretti; R. Coppola; A. Lodini; M. Perrin; F. Rustichelli Physica B, 213 (1995), pp. 803-805

[21] T. Gyula, in: Measurement of Residual Stress in Materials Using Neutrons, 2005, Vienna, Int. Atomic Energy Agency; IAEA-TECDOC-1457, pp. 71–79

[22] T. Gnäupel-Herold, in: Measurement of Residual Stress in Materials Using Neutrons, 2005, Vienna, Int. Atomic Energy Agency; IAEA-TECDOC-1457, pp. 81–90

[23] P.J. Withers; M.W. Johnson; J.S. Wright Physica B, 292 (2000), pp. 273-285

[24] M.R. Daymond; M.A.M. Bourke; R.B. Von Dreele; B. Clausen; T. Lorentzen J. Appl. Phys., 82 (1997) no. 4, pp. 1554-1556

[25] L.E. Edwards; P.J. Withers; M.R. Daymond 6th International Conference on Residual Stress (G.A. Webster, ed.), Institute of Materials, Oxford, 2000, pp. 1116-1123 (ISBN: 1-86125-123-8)

[26] U. Stuhr; H. Spitzer; J. Egger; A. Hofer; P. Rasmussen; D. Graf; A. Bollhalder; M. Schild; G. Bauer; W. Wagner Nuclear Instrum. Methods Phys. Res. A, 545 (2005), pp. 330-338

[27] M.A.M. Bourke; D.C. Dunand; E. Ustundag Appl. Phys. A—Mater. Sci. Process., 74 (2002), p. S1707-S1709

[28] X.L. Wang Journal of Metals, 58 (2006), pp. 52-57

[29] J.F. Nye Physical Properties of Crystals—Their Representation by Tensors and Matrices, Clarendon, Oxford, 1985

[30] A. Baczmanski; K. Wierzbanowski; J. Tarasiuk; M. Ceretti; A. Lodini Revue de Metallurgie—Cahiers d'informations techniques, 94 (1997), pp. 1467-1474

[31] G.A. Webster (Ed.), ISO/TTA3 Technology Trends Assessment, Geneva 20, Switzerland, 2001

[32] P.J. Withers J. Appl. Cryst., 37 (2004), pp. 596-606

[33] W. Reimers; M. Broda; B. Brusch; D. Dantz; K.-D. Liss; A. Pyzalla; T. Schmackers; T. Tschentscher J. Nondest. Eval., 17 (1998), pp. 129-140

[34] P.J. Withers Analysis of Residual Stress by Diffraction using Neutron and Synchrotron Radiation (M.E. Fitzpatrick; A. Lodini, eds.), Taylor & Francis, London, 2003, pp. 170-189

[35] H.J. Stone, H.K.D.H. Bhadeshia, P.J. Withers, Mat. Sci. Forum (2008), in press. Paper was presented at 4th Meca SENS in Vienna

[36] A. Steuwer; J.R. Santisteban; M. Turski; P.J. Withers; T. Buslaps J. Appl. Cryst., 37 (2005), pp. 883-889

[37] A. Steuwer, M. Rahman, M.E. Fitzpatrick, L. Edwards, P.J. Withers, The evolution of residual and crack-tip stresses during a fatigue overload, Acta. Mater. (2007), in preparation

[38] S. Ganguly; M.E. Fitzpatrick; L. Edwards Met. Mat. Trans. A, 37 (2006), pp. 411-420

[39] M.R. Daymond; M.W. Johnson; D.S. Sivia J. Strain Anal. Engrg. Design, 37 (2002), pp. 73-85

[40] G.B. Sarma; P.R. Dawson Internat. J. Plasticity, 12 (1996), pp. 1023-1054

[41] P. Van Houtte; A.K. Kanjarla; A. Van Bael; M. Seefeldt; L. Delannay Europ. J. Mech. A—Solids, 25 (2006), pp. 634-648

[42] P. Bate Phil. Trans. Royal Soc. London Ser. A—Math. Phys. Engrg. Sci., 357 (1999), pp. 1589-1601

[43] G.I. Taylor J. Inst. Met., 62 (1938), pp. 307-324

[44] G. Sachs Z. VDI, 72 (1928), pp. 734-736

[45] R.A. Lebensohn; C.N. Tomé Acta Metall. Mater., 41 (1993), pp. 2611-2624

[46] A.J. Beaudoin; K.K. Mathur; P.R. Dawson; G.C. Johnson Int. J. Plasticity, 9 (1993), p. 833

[47] R. Becker Acta Metall. Mater., 39 (1991), pp. 1211-1230

[48] N. Barton; P. Dawson; M. Miller J. Eng. Mat. Tech.—Trans. ASME, 121 (1999), pp. 230-239

[49] P. Dawson; D. Boyce; S. MacEwen; R. Rogge Mat. Sci. Eng. A, 313 (2001), pp. 123-144

[50] L. Delannay; R.E. Loge; Y. Chastel; P.V. Houte Acta Mater., 50 (2002), pp. 5127-5138

[51] B. Clausen; T. Lorentzen; T. Leffers Acta Mater., 46 (1998), pp. 3087-3098

[52] P.A. Turner; C.N. Tome Acta Metall., 42 (1994), pp. 4143-4153

[53] P. Dawson; D. Boyce; S. MacEwen; R. Rogge Met. Mat. Trans. A, 31 (2000), pp. 1543-1555

[54] B. Clausen, in: Risø National Laboratory, Risø-R-985(EN), Roskilde, Denmark, 1997

[55] B. Clausen; T. Lorentzen; M.A.M. Bourke; M.R. Daymond Mat. Sci. & Eng. A, 259 (1999), pp. 17-24

[56] G.C. Kaschner; C.N. Tome; I.J. Beyerlein; S.C. Vogel; D.W. Brown; R.J. McCabe Acta Mater., 54 (2006), pp. 2887-2896

[57] C.A. Yablinsky; E.K. Cerreta; G.T. Gray; D.W. Brown; S.C. Vogel Met. Mat. Trans. A, 37 (2006), pp. 1907-1915

[58] E.C. Oliver; M.R. Daymond; J. Quinta da Fonseca; P.J. Withers J. Neutron Res., 12 (2004), pp. 33-37

[59] S.R. Agnew; C.N. Tome; D.W. Brown; T.M. Holden; S.C. Vogel Scripta Mater., 48 (2003), pp. 1003-1008

[60] E.C. Oliver, M.R. Daymond, P.J. Withers, in: Materials Science Forum (ICOTOM 14), vol. 490–491, 2005, pp. 257–262

[61] D.W. Brown, S.R. Agnew, S.P. Abeln, W.R. Blumenthal, M.A.M. Bourke, M.C. Mataya, C.N. Tome, S.C. Vogel, in: ICOTOM 14: Textures of Materials, Pts 1 and 2, 2005, pp. 1037–1042

[62] R.E. Newnham Acta Crystallogr. Sect. A, 54 (1998), pp. 729-737

[63] T. Mori; P.J. Withers Encyclopedia of Materials: Science & Technology (K.H.J. Buschow; R.W. Cahn; M.C. Flemings; B. Ilschner; E.J. Kramer; S. Mahajan, eds.), Elsevier, Oxford, 2001, pp. 8113-8121

[64] U. Steigenberger; G. Eckold; M. Hagen Physica B—Condens. Matter, 213 (1995), pp. 1012-1016

[65] N. Glavatska, G. Mogylnyy, S. Danilkin, D. Hohlwein, in: European Powder Diffraction EPDiC 8, 2004, pp. 397–400

[66] P. Sittner; P. Lukas; D. Neov; M.R. Daymond; V. Novak; G.M. Swallowe Mater. Sci. Eng. A, 324 (2002), pp. 225-234

[67] E.H. Kisi; S.J. Kennedy; C.J. Howard J. Amer. Ceram. Soc., 80 (1997), pp. 621-628

[68] E.H. Kisi J. Amer. Ceram. Soc., 81 (1998), pp. 741-745

[69] H.G. Smith; R. Berliner; J.D. Jorgensen; J. Trivisonno Phys. Rev. B, 43 (1991), pp. 4524-4526

[70] E.C. Oliver; T. Mori; M.R. Daymond; P.J. Withers Acta Mater., 51 (2003), pp. 6453-6464

[71] P.J. Withers; W.M. Stobbs; O.B. Pedersen Acta Metall., 37 (1989), pp. 3061-3084

[72] A.J. Allen; M. Bourke; S. Dawes; M.T. Hutchings; P.J. Withers Acta Metall., 40 (1992), pp. 2361-2373

[73] P.J. Withers; D.J. Jensen; H. Lilholt; W.M. Stobbs Proc. ICCM VI/ECCM2 (F.L. Matthews; N.C.R. Buskell; J.M. Hodgkinson; J. Morton, eds.), Elsevier, London, 1987, pp. 255-264

[74] M. Ceretti; C. Braham; J.L. Lebrun; J.P. Bonnafe; M. Perrin; A. Lodini Experimental Techniques, 20 (1996), pp. 14-18

[75] R. Levy-Tubiana; A. Baczmanski; A. Lodini Mater. Sci. Eng. A, 341 (2003), pp. 74-86

[76] S. Majumdar; D.S. Kupperman; J.P. Singh J. Am. Cer. Soc., 71 (1988), pp. 858-863

[77] C.M. Weisbrook; A.D. Krawitz Mat. Sci. Eng. A, 209 (1996), pp. 318-328

[78] R.J. Klassen; K.T. Conlon; J.T. Wood Scripta Mater., 48 (2003), pp. 385-389

[79] N. Shi; R.J. Arsenault; A.D. Krawitz; L.F. Smith Met. Trans. Ser. A, 24 (1993), pp. 187-196

[80] K.L. Lee; A.F. Whitehouse; P.J. Withers; M.R. Daymond Mat. Sci. Eng. A, 348 (2003), pp. 208-216

[81] C.W. Sinclair; G. Saada; J.D. Embury Philos. Magazine, 86 (2006), pp. 4081-4098

[82] C.A. Lewis; P.J. Withers Acta Metall. Mater., 43 (1995), pp. 3685-3699

[83] W.D. Armstrong; T. Lorentzen; P. Brøndsted; P.H. Larsen Acta. Mater., 46 (1998), pp. 3455-3466

[84] D.C. Dunand; D. Mari; M.A.M. Bourke; J.A. Roberts Met. & Mat. Trans. A, 27 (1996), pp. 2820-2836

[85] M.R. Daymond; P.J. Withers Scripta Metall. Mater., 35 (1996), pp. 717-720

[86] M. Karadge, G.M. Regino, B. Grant, A. Hoerling, P.J. Withers, M. Preuss, A.M. Korsunsky, G. Baxter, Mater. Metal. Trans. (2007), submitted for publication

[87] M.W. Johnson; L. Edwards; P.J. Withers Physica B, 234 (1997), pp. 1141-1143

[88] W. Woo; Z. Feng; X.-L. Wang; K. An; W.B. Bailey; S.A. David; C.R. Hubbard; H. Choo Mat. Sci. Forum, 524–525 (2006), pp. 387-392

Cited by Sources:

Comments - Policy