Comptes Rendus
Neutron scattering/Diffusion de neutrons
Modern quantum magnetism by means of neutron scattering
Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 717-736.

We review a selection of recent applications of neutron scattering to the field of quantum magnetism. We focus on systems where, because of quantum fluctuations enhanced by frustration and low dimension, there is no long range magnetic order in the ground state. We select two examples that we treat in more depth to show how neutron studies, in conjunction with the results of other experimental techniques, can give new insights. The first is the case of the spin ladder NaV2O5, where the origin of the spin gap at low temperature is now understood in detail. Apparent contradictions between quantitative measures of the charge order from neutron inelastic scattering, resonant X-ray scattering and NMR have been resolved giving interesting insights into the correlations. The second case is that of spin dimer system Cs3Cr2X9 (X= Br, Cl), undergoing transitions to field induced transverse magnetic order. The Br compound is attractive as the critical fields are sufficiently low that a complete study, in different field directions, is possible. In addition, it is noteworthy in that the magnon that softens and condenses is incommensurable with the lattice. The common description in terms of Bose–Einstein condensation must be extended to include a continuous degeneracy and single ion anisotropy, and conclusions can be drawn by comparison with the Cl compound.

Nous passons en revue une sélection des applications récentes de la diffusion neutronique dans le domaine du magnétisme quantique. Nous nous concentrons sur des systèmes où, du fait des fluctuations quantiques amplifiées par la frustration et la basse dimension, l'état fondamental ne présente pas d'ordre magnétique à longue portée. Nous détaillons deux exemples afin de montrer comment les études neutroniques, conjointement à d'autres techniques expérimentales, peuvent apporter de nouvelles connaissances. Le premier est l'échelle de spin NaV2O5 où l'origine du gap de spin à basse température est maintenant comprise en détail. Les contradictions apparentes entre les mesures quantitatives de l'ordre de charge par diffusion inélastique des neutrons, diffraction résonante des rayons X et RMN ont été résolues, conduisant à des résultats intéressants sur les corrélations. Le second exemple est le système à dimères de spins Cs3Cr2X9 (X= Br, Cl) qui subit des transitions vers un ordre magnétique transverse induit sous champ. Le composé au Br est attrayant pour ses faibles valeurs de champs critiques, permettant ainsi une étude complète, avec différentes directions du champ. Il est de plus remarquable que le magnon qui s'amollit et se condense est incommensurable avec le réseau. La description commune en terme de condensation de Bose–Einstein doit être étendue pour inclure la dégénérescence continue et l'anisotropie à un ion, et des conclusions peuvent être tirées par comparaison avec le composé au Cl.

Published online:
DOI: 10.1016/j.crhy.2007.09.016
Keywords: Low-dimensional magnetism, Field-induced magnetic ordering, Spin excitations, Magnetic neutron scattering
Mot clés : Magnétisme à basse dimension, Ordre magnétique induit sous champ, Excitations de spin, Diffusion magnétique des neutrons

Béatrice Grenier 1; Timothy Ziman 2

1 Université Joseph-Fourier Grenoble I and CEA-Grenoble, DRFMC/SPSMS/Laboratoire magnétisme et diffraction neutronique, 38054 Grenoble cedex 9, France
2 CNRS and Institut Laue-Langevin, 6, rue Jules Horowitz, BP 156, 38042 Grenoble cedex 9, France
@article{CRPHYS_2007__8_7-8_717_0,
     author = {B\'eatrice Grenier and Timothy Ziman},
     title = {Modern quantum magnetism by means of neutron scattering},
     journal = {Comptes Rendus. Physique},
     pages = {717--736},
     publisher = {Elsevier},
     volume = {8},
     number = {7-8},
     year = {2007},
     doi = {10.1016/j.crhy.2007.09.016},
     language = {en},
}
TY  - JOUR
AU  - Béatrice Grenier
AU  - Timothy Ziman
TI  - Modern quantum magnetism by means of neutron scattering
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 717
EP  - 736
VL  - 8
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.09.016
LA  - en
ID  - CRPHYS_2007__8_7-8_717_0
ER  - 
%0 Journal Article
%A Béatrice Grenier
%A Timothy Ziman
%T Modern quantum magnetism by means of neutron scattering
%J Comptes Rendus. Physique
%D 2007
%P 717-736
%V 8
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2007.09.016
%G en
%F CRPHYS_2007__8_7-8_717_0
Béatrice Grenier; Timothy Ziman. Modern quantum magnetism by means of neutron scattering. Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 717-736. doi : 10.1016/j.crhy.2007.09.016. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.09.016/

[1] M. Steiner; J. Villain; C.G. Windsor Adv. Phys., 25 (1976), p. 87

[2] J.P. Renard; M. Verdaguer; L.P. Regnault; W.A.C. Erkelens; J. Rossat-Mignot; W.G. Stirling Europhys. Lett., 3 (1987), p. 945

[3] D. Visser; A.R. Monteith; S.G. Carling; T. Zeiske J. Appl. Phys., 81 (1997), p. 4399 (and references therein)

[4] A.M. Tsvelick, Cambridge University Press, Cambridge, England, 1995 (See e.g. Quantum Field Theories in Condensed Matter Physics)

[5] H. Bethe; R. Baxter Z. Phys., Exactly Solved Models in Statistical Mechanics, 71, Academic Press, London, 1931, p. 205

[6] F.D.M. Haldane Phys. Rev. Lett., 50 (1983), p. 1153

[7] J. Des Cloizeaux; J.J. Pearson Phys. Rev., 128 (1962), p. 2121

[8] S.E. Nagler; D.A. Tennant; R.A. Cowley; T.G. Perring; S.K. Satija Phys. Rev. B, 44 (1991), p. 12361 (and references therein)

[9] B. Lake; D.A. Tennant; C.D. Frost; S.E. Nagler Nature Mater., 4 (2005), p. 329

[10] I.A. Zaliznyak; S.-H. Lee; S.V. Petrov; I.A. Zaliznyak J. Appl. Phys., 87 (2001), p. 8390 (017202 and references therein)

[11] H.J. Schulz Phys. Rev. B, 34 (1986), p. 6372

[12] M. Azuma; Z. Hiroi; M. Takano; K. Ishida; Y. Kitaoka Phys. Rev. Lett., 73 (1994), p. 3463

[13] K. Kudo; T. Noji; Y. Koike; T. Nishizaki; N. Kobayashi J. Phys. Soc. Jpn., 72 (2003), p. 2551

[14] M. Uehara; T. Nagata; J. Akimitsu; H. Takahashi; N. Môri; K. Kinoshita; H. Mayaffre; P. Auban-Senzier; M. Nardone; D. Jérome; D. Poilblanc; C. Bourbonnais; U. Ammerahl; G. Dhalenne; A. Revcolevschi Science, 65 (1996), p. 2764

[15] J.M. Tranquada; D.X. Yao; E.W. Carlson; D.K. Campbell Phys. Rev. B, 73 (2006) See e.g. (unpublished) 224525 and references therein | arXiv

[16] M. Hase; I. Terasaki; K. Uchinokura; J.-P. Pouget; L.-P. Regnault; M. Aïn; B. Hennion; J.-P. Renard; P. Veillet; G. Dhalenne; A. Revcolevschi; J.-P. Boucher; L.-P. Regnault Phys. Rev. Lett., 70 (1993), p. 3651-1966 (For a review, see: J. Phys. I France, 6, 1996, pp. 1939)

[17] J.C. Bonner; S.A. Friedberg; H. Kobayashi; D.L. Meier; H.W. Blöte Phys. Rev. B, 27 (1993), p. 248 (and references therein)

[18] K. Okamoto; K. Nomura Phys. Lett. A, 169 (1992), p. 433

[19] S. Yamamoto Phys. Rev. B, 51 (1995), p. 16128

[20] Y. Narumi; K. Kindo; M. Hagiwara; H. Nakano; A. Kawaguchi; K. Okunishi; M. Kohno Phys. Rev. B, 69 (2004) (174405)

[21] M. Hagiwara; L.P. Regnault; A. Zheludev; A. Stunault; N. Metoki; T. Suzuki; S. Suga; K. Kakurai; Y. Koike; P. Vorderwisch; J.-H. Chung Phys. Rev. Lett., 94 (2005) (177202 and references therein)

[22] M. Johnsson; K.W. Törnroos; F. Mila; P. Millet; P. Lemmens; K.-Y. Choi; E.E. Kaul; C. Geibel; K. Becker; W. Brenig; R. Valenti; C. Gros; M. Johnsson; P. Millet; F. Mila Phys. Rev. Lett., 12 (2000), pp. 2853-2857 (227201)

[23] H. Kikuchi; Y. Fujii; M. Chiba; S. Mitsudo; T. Idehara; T. Tonegawa; K. Okamoto; T. Sakai; T. Kuwai; H. Ohta Phys. Rev. Lett., 94 (2005) (227201 and references therein)

[24] H.-J. Schulz; T. Ziman Europhys. Lett., 18 (1992), p. 355

[25] G. Misguich; C. Lhuillier Frustrated Spin Systems (H.T. Diep, ed.), World Scientific, Singapore, 2004

[26] B.S. Shastry; B. Sutherland Physica B & C, 108 (1981), p. 1069

[27] H. Kageyama; K. Yoshimura; R. Stern; N.V. Mushnikov; K. Onizuka; M. Kato; K. Kosuge; C.P. Slichter; T. Goto; Y. Ueda Phys. Rev. Lett., 82 (1999), p. 3168

[28] S. Miyahara; K. Ueda Phys. Rev. Lett., 82 (1999), p. 3701

[29] O. Cépas; K. Kakurai; L.P. Regnault; T. Ziman; J.P. Boucher; N. Aso; M. Nishi; H. Kageyama; Y. Ueda Phys. Rev. Lett., 87 (2001) (167205)

[30] K. Kodama; M. Takigawa; M. Horvatic; C. Berthier; H. Kageyama; Y. Ueda; S. Miyahara; F. Becca; F. Mila Science, 298 (2002), p. 395

[31] M.P. Zinkin; M.J. Harris; T. Zeiske Phys. Rev. B, 56 (1997), p. 11786

[32] T. Fennell; O.A. Petrenko; B. Fåk; J.S. Gardner; S.T. Bramwell; B. Ouladdiaf Phys. Rev. B, 72 (2005) (224411)

[33] B. Leuenberger; H.U. Güdel; J.K. Kjems; D. Petitgrand Inorg. Chem., 24 (1985), p. 1035

[34] B. Leuenberger; A. Stebler; H.U. Güdel; A. Furrer; R. Feile; J.K. Kjems Phys. Rev. B, 30 (1984), p. 6300

[35] B. Leuenberger; H. Güdel; P. Fischer Phys. Rev. B, 33 (1986), p. 6375

[36] A. Müller; M. Luban; C. Schröder; R. Modler; P. Kögerler; M. Axenovich; J. Schnack; P. Canfield; S. Bud'ko; N. Harrison Chem. Phys. Chem., 2 (2001), p. 517

[37] O. Cépas; T. Ziman Progr. Theor. Phys., 159 (2005), p. 280

[38] H. Seo; C. Hotta; H. Fukuyama Chem. Rev., 104 (2004), p. 5005

[39] L. Brossard; R. Clerac; C. Coulon; M. Tokumoto; T. Ziman; D. Petrov; V. Laukhin; M.J. Naughton; A. Audouard; F. Goze; A. Kobayashi; H. Kobayashi; P. Cassoux Eur. Phys. J. B, 1 (1998), pp. 439-452

[40] L.P. Regnault; M. Aïn; B. Hennion; G. Dhalenne; A. Revcolevschi Phys. Rev. B, 53 (1996), p. 5579

[41] D.C. Dender; P.R. Hammar; D.H. Reich; C. Broholm; G. Aeppli; T. Asano; H. Nojiri; Y. Inagaki; J.P. Boucher; T. Sakon; Y. Ajiro; M. Motokawa Phys. Rev. Lett., 79 (1997), p. 1750

[42] H. Nojiri; H. Kageyama; K. Onizuka; Y. Ueda; M. Motokawa; T. Rõõm; U. Nagel; E. Lippmaa; H. Kageyama; K. Onizuka; Y. Ueda Phys. Rev. B, 68 (1999), p. 2906

[43] I. Affleck Phys. Rev. B, 43 (1991), p. 3215

[44] A. Oosawa; M. Ishii; H. Tanaka; H. Tanaka; A. Oosawa; T. Kato; H. Uekusa; Y. Ohashi; K. Kakurai; A. Hoser J. Phys. Soc. Jpn., 11 (1999), p. 265

[45] Ch. Rüegg; N. Cavadini; A. Furrer; H.-U. Güdel; K. Krämer; H. Mutka; A. Wildes; K. Habicht; P. Vorderwisch Nature (London), 423 (2003), p. 62

[46] V.N. Glazkov; A.I. Smirnov; H. Tanaka; A. Oosawa Phys. Rev. B, 69 (2004) (184410)

[47] B. Grenier; J.-P. Boucher; J.-Y. Henry; L.-P. Regnault; T. Ziman J. Magn. Magn. Mater., 310 (2007), pp. 1269-1271

[48] S.V. Maleev Phys. Uspekhi, 45 (2002), p. 569

[49] M. Isobe; Y. Ueda; M. Weiden; R. Hauptmann; C. Geidel; F. Steglich; M. Fischer; P. Lemmens; G. Güntherodt; Y. Fujii; H. Nakao; T. Yosihama; M. Nishi; K. Nakajima; K. Kakurai; M. Isobe; Y. Ueda; H. Sawa J. Phys. Soc. Jpn., 65 (1996), p. 1178

[50] T. Chatterji; K.D. Liß; G.J. McIntyre; M. Weiden; R. Hauptmann; C. Geibel; A. Meetsma; J.L. de Boer; A. Damascelli; J. Jegoudez; A. Revcolevschi; T.T.M. Palstra Acta. Cryst. C, 108 (1998), p. 23

[51] T. Yosihama; M. Nishi; K. Nakajima; K. Kakurai; Y. Fujii; M. Isobe; C. Kagami; Y. Ueda J. Phys. Soc. Jpn., 67 (1998), p. 744

[52] H.G. Von Schnering; Y. Grin; M. Kaupp; M. Somer; R.K. Kremer; O. Jepsen; T. Chatterji; M. Weiden Z. Kristallogr., 213 (1998), p. 246

[53] T. Ohama; H. Yasuoka; M. Isobe; Y. Ueda Phys. Rev. B, 59 (1999), p. 3299

[54] Y. Fagot-Revurat; M. Mehring; R.K. Kremer Phys. Rev. Lett., 84 (2000), p. 4176

[55] M. Mostovoy; D. Khomski; H. Seo; K. Fukuyama J. Phys. Soc. Jpn., 67 (1998), p. 2602 | arXiv

[56] B. Grenier; O. Cépas; L.P. Regnault; J.E. Lorenzo; T. Ziman; J.P. Boucher; A. Hiess; T. Chatterji; J. Jegoudez; A. Revcolevschi Phys. Rev. Lett., 86 (2001), p. 5966

[57] Y. Joly; S. Grenier; J.E. Lorenzo Phys. Rev. B, 68 (2003) (104412)

[58] M.-B. Lepetit, et al., Preprint, 2007

[59] J. Lüdecke; A. Jobst; S. van Smaalen; E. Morré; C. Geibel; H.-G. Krane Phys. Rev. Lett., 82 (1999), p. 3633

[60] T. Ohama; A. Goto; T. Shimizu; E. Ninomiya; H. Sawa; M. Isobe; Y. Ueda J. Phys. Soc. Jpn., 69 (2000), p. 2751

[61] H. Sawa; E. Ninomiya; T. Ohama; H. Nakao; K. Ohwada; Y. Murakami; Y. Fujii; Y. Noda; M. Isobe; Y. Ueda J. Phys. Soc. Jpn., 71 (2002), p. 385

[62] S. Grenier; A. Toader; J.E. Lorenzo; Y. Joly; B. Grenier; S. Ravy; L.P. Regnault; H. Renevier; J.Y. Henry; J. Jegoudez; A. Revcolevschi Phys. Rev. B, 65 (2002) (180101)

[63] http://www.ill.fr/YellowBookCDrom/index.htm (A detailed presentation of the various neutron spectrometers can be found at:)

[64] O. Cépas, Ph.D. Thesis, University Joseph Fourier, Grenoble, France, 2000

[65] N. Suaud; M.B. Lepetit Phys. Rev. B, 62 (2000), p. 402

[66] N. Suaud; M.B. Lepetit Phys. Rev. Lett., 88 (2002) (056405)

[67] W.-G. Yin; D. Volja; W. Ku Phys. Rev. Lett., 96 (2006) (116405)

[68] B. Leuenberger; H.U. Güdel; P. Fisher J. Solid State Chem., 64 (1986), p. 90

[69] Y. Inagaki, Ph.D. Thesis, Kyushu University, Fukuoka, Japan, 2003

[70] T. Ziman; J.P. Boucher; Y. Inagaki; Y. Ajiro J. Phys. Soc. Jpn., 74 (2005) no. Suppl., pp. 119-128

[71] M.B. Stone; I. Zaliznyak; D.H. Reich; C. Broholm Phys. Rev. B, 64 (2001) (144405)

[72] B. Grenier; L.-P. Regnault; Y. Inagaki; Y. Ajiro; T. Ziman; J.-P. Boucher Physica B, 385–386 (2006), pp. 447-449

[73] B. Grenier; Y. Inagaki; L.P. Regnault; A. Wildes; T. Asano; Y. Ajiro; E. Lhotel; C. Paulsen; T. Ziman; J.P. Boucher Phys. Rev. Lett., 92 (2004) (177202)

[74] B. Grenier, et al., in preparation

[75] W.L. McMillan Phys. Rev. B, 14 (1976), p. 1496

[76] S. Notbohm; P. Ribeiro; B. Lake; D.A. Tennant; K.P. Schmidt; G.S. Uhrig; C. Hess; R. Klingeler; G. Behr; B. Büchner; M. Reehuis; R.I. Bewley; C.D. Frost; P. Manuel; R.S. Eccleston Phys. Rev. Lett., 98 (2007) (027403)

[77] K. Ohoyama; N. Katoh; H. Nojiri; Y.H. Matsuda; H. Hiraka; K. Ikeda; H.M. Shimizu J. Phys.: Conf. Ser., 51 (2006), pp. 506-509

[78] L.P. Regnault Inelastic neutron polarization analysis, Neutron Scattering from Magnetic Materials, Elsevier, Amsterdam, 2005 (Chapter 7)

[79] B.J. Kirby; J.A. Borchers; J.J. Rhyne; S.G.E. te Velthuis; A. Hoffmann; K.V. O'Donovan; T. Wojtowicz; X. Liu; W.L. Lim; J.K. Furdyna Phys. Rev. B., 69 (2004) 081307(R)

[80] A. Goujon; B. Gillon; A. Debede; A. Cousson; A. Gukasov; J. Jeftic; G.J. McIntyre; F. Varret Phys. Rev. B, 73 (2006) (104413)

Cited by Sources:

Comments - Policy