Neutron scattering, with the ability to vary the contrast of molecular items by hydrogen/deuterium exchanges, is an invaluable tool for soft matter research. Besides the structural information on the mesoscopic scale that is obtained by diffraction methods like small angle neutron scattering, the slow dynamics of molecular motion on mesoscopic scale is accessible by high resolution neutron spectroscopy. The basic features of neutron backscattering spectroscopy, and in particular neutron spin-echo spectroscopy, are presented, in combination with illustrations of results from polymer melt dynamics to protein dynamics which are obtained by these techniques.
La diffusion de neutrons, avec la capacité de varier le contraste des molécules par l'échange hydrogène/deutérium, est un outil précieux pour l'étude de la matière molle. En plus de l'information structurale obtenue à des échelles microscopiques par les méthodes de diffraction comme la diffusion de neutrons aux petits angles, la dynamique lente des molécules est accessible par la spectroscopie de neutrons à haute résolution sur les mêmes échelles spatiales. Les principes de bases de la spectroscopie à rétro-diffusion, ainsi que la spectroscopie par écho de spin de neutrons, sont présentés dans cet article. L'apport de ces techniques est illustré par des exemples allant de la dynamique des fondus de polymère à celle des biomolécules.
Mot clés : Matière molle, NSE, Spectroscopie haute résolution
Michael Monkenbusch 1; Dieter Richter 1
@article{CRPHYS_2007__8_7-8_845_0, author = {Michael Monkenbusch and Dieter Richter}, title = {High resolution neutron spectroscopy{\textemdash}a tool for the investigation of dynamics of polymers and soft matter}, journal = {Comptes Rendus. Physique}, pages = {845--864}, publisher = {Elsevier}, volume = {8}, number = {7-8}, year = {2007}, doi = {10.1016/j.crhy.2007.10.001}, language = {en}, }
TY - JOUR AU - Michael Monkenbusch AU - Dieter Richter TI - High resolution neutron spectroscopy—a tool for the investigation of dynamics of polymers and soft matter JO - Comptes Rendus. Physique PY - 2007 SP - 845 EP - 864 VL - 8 IS - 7-8 PB - Elsevier DO - 10.1016/j.crhy.2007.10.001 LA - en ID - CRPHYS_2007__8_7-8_845_0 ER -
%0 Journal Article %A Michael Monkenbusch %A Dieter Richter %T High resolution neutron spectroscopy—a tool for the investigation of dynamics of polymers and soft matter %J Comptes Rendus. Physique %D 2007 %P 845-864 %V 8 %N 7-8 %I Elsevier %R 10.1016/j.crhy.2007.10.001 %G en %F CRPHYS_2007__8_7-8_845_0
Michael Monkenbusch; Dieter Richter. High resolution neutron spectroscopy—a tool for the investigation of dynamics of polymers and soft matter. Comptes Rendus. Physique, Volume 8 (2007) no. 7-8, pp. 845-864. doi : 10.1016/j.crhy.2007.10.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.001/
[1] Determination of radius of gyration of polymethylmethacrylate in glass state by neutron-diffraction, Makromolekulare Chemie, Volume 162 (1972), pp. 299-303
[2] Characterization of polystyrene networks by small-angle neutron-scattering, Journal of Polymer Science Part B—Polymer Physics, Volume 14 (1976), pp. 2119-2128
[3] Chain conformation of isotactic polystyrene in the bulk amorphous state as revealed by small-angle neutron-scattering, Macromolecules, Volume 12 (1979), pp. 86-90
[4] A new high resolution neutron crystal spectrometer and its application, Naturwissenschaften, Volume 56 (1969), p. 410
[5] Neutron crystal spectrometer with extremely high energy resolution, Nuclear Instruments & Methods, Volume 95 (1971), p. 435
[6] J. Schelten, B. Alefeld, in: R. Scherm, H.H. Stiller (Eds.), Proceedings on the Workshop on Neutron Scattering Instrumentation for SNQ
[7] Status of the high-flux backscattering spectrometer RSSM for the FRM-II reactor in Munich, Applied Physics A—Materials Science & Processing, Volume 74 (2002), p. S133-S135
[8] The high-flux backscattering spectrometer at the NIST Center for Neutron Research, Review of Scientific Instruments, Volume 74 (2003), pp. 2759-2777
[9] Neutron spin-echo—new concept in polarized thermal-neutron techniques, Zeitschrift Fur Physik, Volume 255 (1972), p. 146
[10] Neutron Spin Echo (F. Mezei, ed.), Lecture Notes in Physics, vol. 128, Springer, Berlin, Heidelberg, New York, 1980
[11] Neutron Spin Echo Spectroscopy (F. Mezei; C. Pappas; T. Gutberlet, eds.), Lecture Notes in Physics, vol. 601, Springer, Berlin, Heidelberg, New York, 2003
[12] Spin echoes, Physical Review, Volume 80 (1950), pp. 580-594
[13] The long-wavelength neutron spin-echo spectrometer IN15 at the Institut Laue-Langevin, Physica B, Volume 241 (1997), pp. 164-165
[14] Recent neutron spin-echo developments at the ILL (IN11 and in15), Physica B, Volume 268 (1999), pp. 270-276
[15] The Julich neutron spin-echo spectrometer—Design and performance, Nuclear Instruments & Methods in Physics Research Section A—Accelerators Spectrometers Detectors and Associated Equipment, Volume 399 (1997), pp. 301-323
[16] Neutron spin echo spectroscopy at the NIST Center for Neutron Research, Scattering from Polymers, Volume 739 (2000), pp. 103-116
[17] Neutron spin-echo spectrometer at jrr-3m, Physica B, Volume 213 (1995), pp. 863-865
[18] Improvement of neutron spin echo spectrometer at C2-2 of jrr3m, Journal of Physics and Chemistry of Solids, Volume 60 (1999), pp. 1599-1601
[19] Neutron spin-echo spectrometer development for spallation sources, Physica B—Condensed Matter, Volume 335 (2003), pp. 153-156
[20] The high-resolution neutron spin-echo spectrometer for the SNS with τ >= 1 μs, Physica B—Condensed Matter, Volume 350 (2004), pp. 147-150
[21] Correction elements for ultra-high resolution NSE spectrometer, Physica B—Condensed Matter, Volume 356 (2005), pp. 234-238
[22] Wide angle NSE: the spectrometer SPAN at BENSC, Physica B, Volume 297 (2001), pp. 14-17
[23] A neutron resonance spin-echo spectrometer for quasi-elastic and inelastic-scattering, Physics Letters A, Volume 123 (1987), pp. 43-48
[24] Prospects of resonance spin echo, Physica B—Condensed Matter, Volume 266 (1999), pp. 75-86
[25] Neutron spin echo spectrometry with zero field or by resonance, Journal de Physique IV, Volume 10 (2000), pp. 59-75
[26] Collective dynamics of a photosynthetic protein probed by neutron spin-echo spectroscopy and molecular dynamics simulation, Physica B, Volume 276 (2000), pp. 514-515
[27] Myoglobin in crowded solutions: structure and diffusion, Chemical Physics, Volume 292 (2003), pp. 413-424
[28] A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, Journal of Chemical Physics, Volume 21 (1953), pp. 1272-1280
[29] Quasi-elastic scattering of neutrons by dilute polymer solutions. I. Free-draining limit, Physics—New York, Volume 3 (1967), p. 37
[30] The Theory of Polymer Dynamics, International Series of Monographs on Physics, vol. 73, Oxford University Press, Oxford, 1994
[31] Quasi-elastic scattering by dilute ideal polymer solutions. 2. Effects of hydrodynamic interactions, Physics—New York, Volume 3 (1967), p. 181
[32] Entanglements of polymer chains, Journal of Polymer Science, Volume 25 (1957), pp. 243-245
[33] Entanglement concept in polymer systems, Chemical Reviews, Volume 66 (1966), p. 1
[34] Dynamics of entangled polymer-solutions. 1. Rouse model, Macromolecules, Volume 9 (1976), pp. 587-593
[35] Coherent scattering by one reptating chain, Journal de Physique, Volume 42 (1981), pp. 735-740
[36] Dynamics of entangled polymer-chains, Annual Review of Physical Chemistry, Volume 33 (1982), pp. 49-61
[37] Dynamics of concentrated polymer systems. 1. Brownian-motion in equilibrium state, Journal of The Chemical Society—Faraday Transactions II, Volume 74 (1978), pp. 1789-1801
[38] Dynamics of concentrated polymer systems. 2. Molecular-motion under flow, Journal of The Chemical Society—Faraday Transactions II, Volume 74 (1978), pp. 1802-1817
[39] Dynamics of concentrated polymer systems. 3. Constitutive equation, Journal of The Chemical Society—Faraday Transactions II, Volume 74 (1978), pp. 1818-1832
[40] Dynamics of rod-like macromolecules in concentrated-solution. 2, Journal of The Chemical Society—Faraday Transactions II, Volume 74 (1978), pp. 918-932
[41] Dynamics of rod-like macromolecules in concentrated-solution. 1, Journal of The Chemical Society—Faraday Transactions II, Volume 74 (1978), pp. 560-570
[42] Dynamics of concentrated polymer systems. 4. Rheological properties, Journal of The Chemical Society—Faraday Transactions II, Volume 75 (1979), pp. 38-54
[43] Polymer motion at the crossover from rouse to reptation dynamics, Macromolecules, Volume 27 (1994), pp. 7437-7446
[44] Microscopic dynamics and topological constraints in polymer melts—a neutron-spin-echo study, Physical Review Letters, Volume 62 (1989), pp. 2140-2143
[45] Entanglement constraints in polymer melts—a neutron spin-echo study, Macromolecules, Volume 25 (1992), pp. 6156-6164
[46] Clear evidence of reptation in polyethylene from neutron spin-echo spectroscopy, Physical Review Letters, Volume 81 (1998), pp. 124-127
[47] Tube theory of entangled polymer dynamics, Advances in Physics, Volume 51 (2002), pp. 1379-1527
[48] On the origins of entanglement constraints, Macromolecules, Volume 26 (1993), pp. 795-804
[49] Reptation in polyethylene-melts with different molecular weights, Physica B, Volume 276 (2000), pp. 337-338
[50] Direct observation of the transition from free to constrained single-segment motion in entangled polymer melts, Physical Review Letters, Volume 90 (2003), p. 058302
[51] Molecular observation of contour-length fluctuations limiting topological confinement in polymer melts, Physical Review Letters, Volume 88 (2002), p. 058301
[52] Quantitative theory for linear dynamics of linear entangled polymers, Macromolecules, Volume 35 (2002), pp. 6332-6343
[53] The dynamic structure factor of a star polymer in a concentrated-solution, Macromolecules, Volume 26 (1993), pp. 5264-5266
[54] Contour length fluctuations in polymer melts: A direct molecular proof, Europhysics Letters, Volume 72 (2005), pp. 1039-1044
[55] Reptation and contour-length fluctuations in melts of linear polymers, Physical Review Letters, Volume 81 (1998), pp. 725-728
[56] Molecular observation of constraint release in polymer melts, Physical Review Letters, Volume 96 (2006), p. 238302
[57] Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion, Macromolecules, Volume 38 (2005), pp. 6128-6139
[58] Chain motion in an unentangled polyethylene melt: A critical test of the rouse model by molecular dynamics simulations and neutron spin echo spectroscopy, Physical Review Letters, Volume 80 (1998), pp. 2346-2349
[59] Local dynamics in a long-chain alkane melt from molecular dynamics simulations and neutron scattering experiments, Journal of Chemical Physics, Volume 107 (1997), pp. 4751-4755
[60] Molecular dynamics of a 1,4-polybutadiene melt. Comparison of experiment and simulation, Macromolecules, Volume 32 (1999), pp. 8857-8865
[61] A comparison of neutron scattering studies and computer simulations of polymer melts, Chemical Physics, Volume 261 (2000), pp. 61-74
[62] On the non-Gaussianity of chain motion in unentangled polymer melts, Journal of Chemical Physics, Volume 114 (2001), pp. 4285-4288
[63] Dynamics of polymer molecules in dilute solution—viscoelasticity, flow birefringence and dielectric loss, Journal of Chemical Physics, Volume 24 (1956), pp. 269-278
[64] Neutron spin echo in polymer systems, Neutron Spin Echo in Polymer Systems, Volume 174 (2005), pp. 1-221
[65] Nonflexible coils in solution: A neutron spin-echo investigation of alkyl-substituted polynorbornenes in tetrahydrofuran, Macromolecules, Volume 39 (2006), pp. 9473-9479
[66] Elastic properties of lipid bilayers—theory and possible experiments, Zeitschrift Fur Naturforschung C—A Journal of Biosciences C, Volume 28 (1973), pp. 693-703
[67] Amphiphilic block copolymers as efficiency boosters for microemulsions, Langmuir, Volume 15 (1999), pp. 6707-6711
[68] Effect of amphiphilic block copolymers on the structure and phase behavior of oil–water–surfactant mixtures, Journal of Chemical Physics, Volume 115 (2001), pp. 580-600
[69] Amphiphilic block copolymers as efficiency boosters in microemulsions: a SANS investigation of the role of polymers, Applied Physics A—Materials Science & Processing, Volume 74 (2002), p. S392-S395
[70] Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers, Journal of Chemical Physics, Volume 115 (2001), pp. 9563-9577
[71] Microemulsion efficiency boosting and the complementary effect. 1. Structural properties, Langmuir, Volume 20 (2004), pp. 10433-10443
[72] Polymer depletion effects near mesoscopic particles, Physical Review E, Volume 59 (1999), pp. 6853-6878
[73] Effects of thermal fluctuations on systems with small surface-tension, Physical Review Letters, Volume 54 (1985), pp. 1690-1693
[74] Effect of thermal undulations on the rigidity of fluid membranes and interfaces, Journal de Physique, Volume 46 (1985), pp. 1263-1268
[75] Covariant hydrodynamics of fluid membranes, Physical Review Letters, Volume 73 (1994), pp. 1186-1189
[76] Random surface discretizations and the renormalization of the bending rigidity, Journal de Physique I, Volume 6 (1996), pp. 1305-1320
[77] Effect of thermal undulations on the bending elasticity and spontaneous curvature of fluid membranes, European Physical Journal E, Volume 3 (2000), pp. 149-157
[78] Measuring bending rigidity and spatial renormalization in bicontinuous microemulsions, Europhysics Letters, Volume 56 (2001), pp. 683-689
[79] Dynamic properties of microemulsions modified with homopolymers and diblock copolymers: The determination of bending moduli and renormalization effects, Journal of Chemical Physics, Volume 122 (2005), p. 094908
[80] Dynamics of the swollen lamellar phase, European Physical Journal E, Volume 4 (2001), pp. 103-114
[81] Undulations and dynamic structure factor of membranes, Physical Review Letters, Volume 77 (1996), pp. 4788-4791
[82] Dynamics of bicontinuous microemulsion phases with and without amphiphilic block-copolymers, Journal of Chemical Physics, Volume 115 (2001), pp. 9563-9577
[83] Coupled protein domain motion in Taq polymerase revealed by neutron spin-echo spectroscopy, Proceedings of The National Academy of Sciences of The United States of America, Volume 102 (2005), pp. 17646-17651
[84] DNA Replication, Freeman, San Francisco, 1992
[85] Structure-specific endonucleolytic cleavage of nucleic-acids by eubacterial DNA-polymerases, Science, Volume 260 (1993), pp. 778-783
[86] Biochemistry—How soft is a protein? A protein dynamics force constant measured by neutron scattering, Science, Volume 288 (2000), pp. 1604-1607
[87] Crystal-structure of thermus-aquaticus DNA-polymerase, Nature, Volume 376 (1995), pp. 612-616
[88] Structure of Taq polymerase with DNA at the polymerase active site, Nature, Volume 382 (1996), pp. 278-281
[89] Gromacs: Fast, flexible, and free, Journal of Computational Chemistry, Volume 26 (2005), pp. 1701-1718
[90] Hydrodynamic properties of rigid particles: Comparison of different modeling and computational procedures, Biophysical Journal, Volume 76 (1999), pp. 3044-3057
[91] Improved hydrodynamic interaction in macromolecular bead models, Journal of Chemical Physics, Volume 111 (1999), pp. 4817-4826
[92] Calculation of hydrodynamic properties of globular proteins from their atomic-level structure, Biophysical Journal, Volume 78 (2000), pp. 719-730
Cited by Sources:
Comments - Politique