Comptes Rendus
Neutron scattering/Diffusion de neutrons
A review of in situ and/or time resolved neutron scattering
[Une revue sur la diffusion des neutrons réalisée in situ et/ou résolue en temps]
Comptes Rendus. Physique, Neutron scattering: a comprehensive tool for condensed matter research, Volume 8 (2007) no. 7-8, pp. 789-805.

La forte pénétration des neutrons dans la matière permet d'effectuer des expériences in situ, dans des conditions réelles. Sur les sources à haut flux de neutrons, le développement d'instruments spécialisés, dédiés à ces études, rend possible des acquisitions très rapides. Ainsi, il est désormais possible d'effectuer non seulement des études in situ mais aussi résolues en temps afin d'étudier des processus physique ou chimique sur plusieurs échelles de temps s'étalant de quelques millisecondes à l'heure. De nombreux exemples récents seront présentés, pris dans divers domaines de recherche : physique, chimie, métallurgie, magnétisme, électrochimie, polymères et archéologie. Parmi le large éventail de techniques neutroniques qui peuvent être effectuées in situ ou en temps réels, nous présenterons ici des résultats de diffraction neutronique sur poudre, de diffusion des neutrons aux petits angles et de radiographie neutronique.

Thanks to the ability of neutrons to penetrate deep into matter, experiments can be performed in situ in real conditions. The development of dedicated instruments on high flux neutron sources also enables fast data acquisition. As a consequence, it is now possible to investigate not only in situ but also time resolved physical or chemical processes over several time scales ranging from hours to a few milliseconds. Several recent examples are taken in different fields of research: physics, magnetism, chemistry, metallurgy, electrochemistry, polymers and archeometry. Among the scattering techniques that can be used to perform in situ or time resolved experiments we present results of powder neutron diffraction, small angle neutron scattering, and neutron radiography.

Publié le :
DOI : 10.1016/j.crhy.2007.10.002
Keywords: In situ studies, Powder neutron diffraction, Time resolved investigation, Small angle neutron scattering
Mots-clés : Études in situ, Diffraction neutronique sur poudre, Expériences en temps réels, Diffusion des neutrons aux petits angles

Olivier Isnard 1, 2, 3

1 Institut Néel, CNRS, Boîte F, BP 166, associé à l'Université J. Fourier, 38042 Grenoble cedex 9, France
2 Institut Universitaire de France, Maison des Universités, 103, Boulevard Saint Michel, 75005 Paris cedex, France
3 Institut Laue–Langevin, 6 rue J. Horowitz, BP156, 38042 Grenoble cedex 9, France
@article{CRPHYS_2007__8_7-8_789_0,
     author = {Olivier Isnard},
     title = {A review of in situ and/or time resolved neutron scattering},
     journal = {Comptes Rendus. Physique},
     pages = {789--805},
     publisher = {Elsevier},
     volume = {8},
     number = {7-8},
     year = {2007},
     doi = {10.1016/j.crhy.2007.10.002},
     language = {en},
}
TY  - JOUR
AU  - Olivier Isnard
TI  - A review of in situ and/or time resolved neutron scattering
JO  - Comptes Rendus. Physique
PY  - 2007
SP  - 789
EP  - 805
VL  - 8
IS  - 7-8
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.10.002
LA  - en
ID  - CRPHYS_2007__8_7-8_789_0
ER  - 
%0 Journal Article
%A Olivier Isnard
%T A review of in situ and/or time resolved neutron scattering
%J Comptes Rendus. Physique
%D 2007
%P 789-805
%V 8
%N 7-8
%I Elsevier
%R 10.1016/j.crhy.2007.10.002
%G en
%F CRPHYS_2007__8_7-8_789_0
Olivier Isnard. A review of in situ and/or time resolved neutron scattering. Comptes Rendus. Physique, Neutron scattering: a comprehensive tool for condensed matter research, Volume 8 (2007) no. 7-8, pp. 789-805. doi : 10.1016/j.crhy.2007.10.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.10.002/

[1] J. Pannetier Chemica Scripta, 26 (1986), p. 131

[2] O. Isnard J. Optoelectron. Adv. Mater., 8 (2006), pp. 411-417

[3] O. Isnard J. de Phys. IV, 103 (2003), pp. 133-171

[4] M.C. Moron J. Mater. Chem., 10 (2000), pp. 2617-2626

[5] O. Isnard, Usefulness of neutron scattering investigation in materials science, J. Optoelectron. Adv. Mater. (2007), in press

[6] J. Pannetier Neutron and Synchrotron Radiation for Condensed Matter (J. Baruchel; J.L. Hodeau; M. Lehmann; J.R. Regnard; C. Schlenker, eds.), EDP-Sciences Publisher, 1993, p. 425

[7] P.J. Withers, C.R. Physique (2007); DOI:, in this issue | DOI

[8] J. de Phys. IV, 89 (2001), p. 1

[9] Yu.A. Izyumov; V.E. Naish; R.P. Ozerov Neutron Diffraction and Magnetic Materials, Plenum Publishing Corp., 1991

[10] O. Prokhnenko et al. Neutron diffraction studies of the magnetic phase transitions in Ce2Fe17 compound under pressure, J. Appl. Phys., Volume 92 (2002) no. 1, pp. 385-391

[11] O. Prokhnenko et al. Helimagnetic order in the re-entrant ferromagnet Ce2Fe15.3Mn1.7, J. Appl. Phys., Volume 97 (2005) (113909-1 to 8)

[12] J.L. Soubeyroux; N. Claret Phys. A, 74 (2002), p. S1025

[13] J.L. Soubeyroux; J.M. Pelletier; R. Perrier de la Bâthie Physica B, 276–278 (2004), p. 905

[14] P. Gorria et al. Crystallisation and polymorphic transformations in Fe–Zr amorphous alloys obtained by high energy-ball milling, Physica B, Volume 350 (2004), p. e1075-e1077

[15] X. Chuang-Dong; M. de Boissieu; J.M. Dubois; J. Pannetier; C. Janot J. Mater. Sci. Lett., 8 (1989), pp. 827-830

[16] E. Chappel; M.D. Nunez-Regueiro; G. Chouteau; O. Isnard; C. Darie Eur. Phys. J. B, 17 (2000), pp. 615-622

[17] A.N. Christenesen; M.S. Lehmann; J. Pannetier J. Appl. Cryst., 18 (1985), pp. 170-172

[18] M. Castellote et al. Composition and microstructure changes of cement pastes upon heating as studied by neutron diffraction, Cement Concrete Res., Volume 34 (2004), pp. 1633-1644

[19] A.N. Christensen; T.R. Jesen; J.C. Hanson J. Sol. State Chem., 177 (2004), pp. 1944-1951

[20] J. Lyubina et al. Ordering of nanocrystalline Fe–Pt alloys studied by in situ powder neutron diffraction, J. Appl. Phys., Volume 100 (2006), p. 094308

[21] J. Lyubina et al. Influence of composition and order on the magnetism of Fe–Pt alloys: Neutron powder diffraction and theory, Appl. Phys. Lett., Volume 89 (2006), p. 032506

[22] O. Prokhnenko et al. Effect of pressure and Mn substitution on the magnetic ordering of Ce2Fe17−xMnx, Appl. Phys. A, Volume 74 (2002), p. S610-S612

[23] E.M.L. Chung et al. Magnetic properties of tapiolite (FeTa2O6); a quasi two-dimensional (2D) antiferromagnet, J. Phys.: Condens. Matter, Volume 16 (2004), pp. 7837-7852

[24] E.J. Kinast et al. Bicriticallity in FexCo1−xTa2O6, Phys. Rev. Lett., Volume 91 (2003) (197208-1)

[25] W.G. Williams; R.M. Ibberson; P. Day; J.E. Enderby Physica B, 241–243 (1998), pp. 234-236

[26] A.C. Hannon Nuclear Instrum. Methods Phys. Res. A, 551 (2005), pp. 88-107

[27] S.H. Kilcoyne, P. Manuel, C. Ritter, P. Radaelli, in: ILL Millenium Symposium Proceedings, 2001, pp. 170–171

[28] S.H. Kilcoyne Physica B: Condens. Matter, 350 (2004), pp. 91-97

[29] P. Day et al. GEM: The General Materials diffractometer at ISIS—multibank capabilities for studying crystalline and disordered materials, Neutron News, Volume 15 (2004), pp. 19-23

[30] H. Fischer; A.C. Barns; P.S. Salmon Rep. Prog. Phys., 69 (2006), pp. 233-299

[31] O. Isnard et al. Neutron diffraction study of the structural and magnetic properties of the R2Fe17Hx ternary compounds (R = Ce, Nd, Ho), J. Less-Common Met., Volume 162 (1990), pp. 273-284

[32] O. Isnard et al. Neutron powder diffraction study of Pr2Fe17 and Pr2Fe17N3, Phys. Rev. B, Volume 45 (1992), pp. 2920-2926

[33] D. Fruchart et al. R2Fe17 and RM12 carbide and carbonitride synthesis from heavy hydrocarbon compounds, J. Alloys Comp., Volume 203 (1994), pp. 157-163

[34] O. Isnard et al. Neutron powder diffraction study of the desorption of deuterium in Nd2Fe17Dx=5, Physica B, Volume 180–181 (1992), pp. 629-631

[35] O. Isnard et al. Magnetic circular X-ray dichroism study of the Ce2Fe17Hx compounds, Phys. Rev. B, Volume 49 (1994), pp. 15692-15701

[36] E. Mamontov et al. Neutron scattering study of hydrogen dynamics in Pr2Fe17H5, Phys. Rev. B, Volume 70 (2004), p. 214305

[37] T.J. Udovic et al. Neutron vibrational spectroscopy of the Pr2Fe17 based hydrides, J. Alloys Comp., Volume 446–447 (2007), pp. 504-507

[38] O. Isnard et al. Neutron powder diffraction study of the reaction of Nd2Fe17 compound with nitrogen gas, Physica B, Volume 180–181 (1992), pp. 624-626

[39] Ph. Oleinek et al. In situ neutron diffraction study of the reaction of the compounds NdFe10.75V1.25 and NdFe11Ti with nitrogen, J. Alloys Comp., Volume 298 (2000), pp. 220-225

[40] B. Tolla et al. Structural investigation of oxygen insertion within the Ce2Sn2O7 and Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments, J. Mater. Chem., Volume 12 (1999), pp. 3131-3136

[41] J. Rodriguez-Carvajal et al. The chemistry of YBa2Cu3O7: a neutron powder thermodiffractometry study, Physica C, Volume 153–155 (1988), pp. 1671-1672

[42] M. Latroche et al. In situ neutron diffraction study of deuterium absorption in AB5 alloys used as negative electrode materials for Ni-MH battery, Physica B, Volume 350 (2004), p. E427-E430

[43] L. Schlapbach, Hydrogen in intermetallic compounds I, Topics in Applied Physics serie 63, Springer-Verlag, Berlin, 1988, p. 350

[44] L. Schlapbach, Hydrogen in intermetallic compounds II, Topics in Applied Physics serie 67, Springer-Verlag, Berlin, 1992, p. 328

[45] M. Latroche; A. Percheron-Guegan; Y. Chabre J. Alloys Comp., 293–295 (1999), p. 637

[46] M. Latroche et al. Influence of stoichiometry and composition on the structural and electrochemical properties of AB5+y-based alloys used as negative electrode materials in Ni-MH batteries, J. Alloys Comp., Volume 330–332 (2002), pp. 787-791

[47] S. Vivet et al. Influence of composition on phase occurrence during charge process of AB5+x Ni-MH negative electrode materials, Physica B, Volume 362 (2005), pp. 199-207

[48] F. Cuevas et al. In situ neutron diffraction study of deuterium desorption from LaNi5+x (x1) alloy, Appl. Phys. A, Volume 74 (2002), p. S175-S177

[49] F. Bardé et al. In situ neutron powder diffraction of a nickel hydroxide electrode, Chem. Mater., Volume 16 (2004), pp. 3936-3948

[50] Y. Chabre Chemical physics of intercalation II, NATO Series B, Volume 305 (1993), pp. 181-192

[51] Y. Chabre; J. Pannetier Progress Solid State Chem., 23 (1995), pp. 1-130

[52] M. Rippert; J. Pannetier; Y. Chabre; C. Poinsignon Mat. Res. Soc. Proc., 210 (1991), pp. 359-365

[53] R.N. Vannier et al. Bi4V2O11 polymorph crystal structures related to their electrical properties, Solid State Ionics, Volume 157 (2003), pp. 147-153

[54] E. Capoen et al. Time resolved in situ neutron diffraction investigation of the oxygen transfer in BIMEVOX membrane under operating conditions, Solid State Ionics, Volume 175 (2004), pp. 419-424

[55] V. Gerold; G. Kostorz J. Appl. Cryst., 11 (1978), pp. 376-404

[56] J. de Phys. IV, 60 (1999)

[57] R. Lund et al. Equilibrium exchange kinetics in PEP-PEO block copolymer micelles. A time resolved SANS study, Physica B, Volume 385–386 (2006), pp. 735-737

[58] P. Damay; F. Leclercq; P. Chieux A critical crossover in metal–ammonia solutions (Na–ND3) as observed by small angle neutron scattering, J. Phys. Chem., Volume 88 (1984), pp. 3734-3740

[59] J.N. Clark; M.L. Fernandez; P.E. Tomlins; J.S. Higgins Macromolecules, 26 (1993), pp. 5897-5907

[60] J.N. Clark; J.S. Higgins; C.K. Kim; D.R. Paul Polymer, 33 (1992), pp. 3137-3144

[61] D. Bellet; A. Royer; P. Bastie; J. Lajzerovicz; J.F. Legrand In situ small angle neutron scattering study of γ precipitates in AM1 supermalloy single crystals (S.D. Antolovich et al., eds.), Supermalloy, The Minerals, Metals & Materials Society, 1992, pp. 547-553

[62] M. Véron; P. Bastie Acta Mater., 45 (1997), p. 3277

[63] A. Royer; P. Bastie; D. Bellet; B. Hennion Rev. Metal. Paris, 93 (1996), p. 2

[64] U. Cihak et al. Characterization of residual stresses in turbine discs by neutron and high-energy X-ray diffraction and comparison to finite element modelling, Mater. Sci. Eng. A, Volume 437 (2006), pp. 75-82

[65] C. Pujolle-Robic; L. Noirez Nature, 409 (2001), pp. 167-170

[66] L. Noirez Phys. Rev. Lett., 84 (2000), pp. 2164-2167

[67] M.H. Li et al. Observation of hairpin defects in a nematic main chain polyester, Phys. Rev. Lett., Volume 70 (1993), pp. 2297-2300

[68] M.H. Li et al. Study of the chain conformation of thermotropic nematic main chain polyesters, J. Phys. II France (1994), pp. 1843-1863

[69] Practical Neutron Radiography (J.C. Domanus, ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992

[70] G. Bayon J. de Phys. IV, 130 (2005), pp. 231-241

[71] M. Dierick et al. High-speed neutron tomography of dynamic processes, Nucl. Instrum. Methods Phys. Res., Sect. A, Volume 542 (2005), pp. 296-301

[72] B. Schillinger; E.H. Lehmann Neutrons News, 17 (2006), pp. 19-21

[73] M. Lanz et al. In situ neutron radiography of lithium-ion batteries during charge/discharge cycling, J. Power Sources, Volume 101 (2001), pp. 177-181

[74] D. Goers et al. In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging, J. Power Sources, Volume 130 (2004), pp. 221-226

[75] B. Schillinger; J. Brunner; E. Calzada Physica B, 385–386 (2006), pp. 921-923

[76] A. Khale; B. Winkler; B. Hennion J. Non-Newtonian Fluid Mech., 112 (2003), pp. 203-215

[77] B. Winkler et al. Neutron imaging and neutron tomography as non destructive tools to study bulk rock samples, Europ. J. Mineralogy, Volume 14 (2002), pp. 349-354

[78] E.H. Lehmann Neutrons News, 17 (2006), pp. 22-29

[79] E. Deschler-Erb; E.H. Lemann; M. Soares Alt heydnisch Bildein von Ertz, Archeologie der Schweitz, Volume 27 (2004), p. 3

[80] P. Martinetto et al. Molecular and Structural Archeology: Cosmetic and Therapeutic Chemical (G. Tsoucaris; J. Lipkowski, eds.), NATO Series, vol. 117, Kluwer Academic Press Publisher, 2003, p. 107

[81] W. Kockelmann Applications of TOF neutron diffraction in archaeometry, Appl. Phys. A: Mater. Sci. Process., Volume 83 (2006), pp. 175-182

[82] G. Artioli, et al., Early copper alpine metallurgy, in: Proceedings of the International Conference on Archeometallurgy in Europe, 2003

[83] G. Artioli et al. www.ill.fr (Institut Laue–Langevin experimental report)

[84] G. Artioli et al. Crystallographic texture analysis of the iceman and coeval copper axes by non invasive neutron powder diffraction (A. Fleckinger, ed.), Die Gletschermumie aus der Kupferzeit 2, Schriften des Südtiroler Archeologiemuseums and Südtiroler Archeologiemuseum, Folio Verlag, Bozen/Wien, 2003 (ISBN: 3-85256-249-X/88-86857-41-1)

[85] M. Impéror-Clerc et al. Initial steps of the formation of SBA-15 materials: an in situ small angle neutron scattering investigation, Chem. Comm. (2007), pp. 834-836

[86] I. Grillo J. Phys. IV France, 130 (2005), p. 75

[87] I. Grillo; E.I. Kats; A.R. Muratov Langmuir, 19 (2003), pp. 4513-4581

[88] F. Né et al. How does ZrO2/surfactant mesophase nucleate? Formation mechanism, Langmuir, Volume 19 (2003), pp. 8503-8510

[89] E. Wu; D.P. Riley; E.H. Kisi; R.I. Smith Reaction kinetics in Ti3SiC2 synthesis studied by time resolved neutron diffraction, J. Europ. Ceram. Soc., Volume 25 (2005), pp. 3503-3508

[90] D.P. Riley; E.H. Kisi; T.C. Hansen; A.W. Hewat Self-propagating high temperature synthesis of Ti3SiC2: Ultra high speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., Volume 85 (2002), pp. 2417-2424

[91] E. Wu; E.H. Kisi; S.J. Kennedy; A.J. Studer In situ neutron diffraction study of Ti3SiC2 synthesis, J. Am. Ceram. Soc., Volume 84 (2001), pp. 2281-2288

[92] E. Wu; E.H. Kisi; S.J. Kennedy; R.I. Smith Intermediate phases in Ti3SiC2 synthesis from Ti/SiC mixtures studied by time-resolved neutron diffraction, J. Am. Ceram. Soc., Volume 85 (2002), pp. 3084-3086

[93] J. Wong et al. Time resolved diffraction study of solid combustions reactions using synchrotron reaction, Science, Volume 249 (1990), p. 1406

[94] C. Curfs TiC–NiAl composites obtained by SHS: a time resolved XRD study, J. Europ. Ceram. Soc., Volume 22 (2006), pp. 1039-1044

[95] L. Contreras et al. Time resolved XRD study if TiC–TiB2 composites obtained by SHS, Acta Mater., Volume 37 (2004), pp. 4783-4790

[96] A.W. Hewat, H.E. Fischer, B. Guerard, M. Thomas, Dracula and the H12 tube renewal, project in preparation

[97] H.E. Fischer, A.W. Hewat, DRACULA internal report, Institut Laue–Langevin, September 2006

[98] G. Eckold Nucl. Instrum. Meth. A, 238 (1990), pp. 221-230

[99] G. Eckold J. Phys. Condens. Matter, 13 (2001), pp. 217-220

[100] A. Ringe; P. Elter; H. Gibhardt; G. Eckold Sol. State Ionics, 177 (2006), pp. 2473-2479

[101] U. Steigenberger; G. Eckold; M. Hagen Physica B, 213–214 (1995), pp. 1012-1016

[102] U. Steigenberger; G. Eckold; M. Hagen Nucl. Instrum. Meth. B, 93 (1994), pp. 316-321

[103] O. Waldmann et al. Magnetic relaxation studies on single-molecule magnet by time-resolved inelastic scattering, Appl. Phys. Lett., Volume 88 (2006), p. 042507

  • Jialiang Zhang; Zhi Yang; Aditya Ponukumati; Manjula Senanayake; Sai Venkatesh Pingali; Marcus Foston Structural Evolution of Lignin Using In Situ Small-Angle Neutron Scattering during Catalytic Disassembly, ACS Sustainable Chemistry Engineering, Volume 12 (2024) no. 6, p. 2241 | DOI:10.1021/acssuschemeng.3c06368
  • Sebastian A. Suarez The master key: structural science in unlocking functional materials advancements, Journal of Applied Crystallography, Volume 57 (2024) no. 3, p. 606 | DOI:10.1107/s1600576724003674
  • Bowen Cui; Peizhen Xu; Xiangzheng Li; Kailong Fan; Xin Guo; Limin Tong Low-Dimensional and Confined Ice, Annual Review of Materials Research, Volume 53 (2023) no. 1, p. 371 | DOI:10.1146/annurev-matsci-080921-101821
  • Susanne L. Skjærvø; Mikkel Juelsholt; Kirsten M.Ø. Jensen In situ scattering studies of material formation during wet-chemical syntheses, Comprehensive Inorganic Chemistry III (2023), p. 248 | DOI:10.1016/b978-0-12-823144-9.00023-6
  • Hadi Rahmaninejad; Rana Ashkar Neutron scattering studies of nanoscale polymer-based coatings, Polymer-Based Nanoscale Materials for Surface Coatings (2023), p. 349 | DOI:10.1016/b978-0-32-390778-1.00024-4
  • Haiwang Yong; Daniel Keefer; Shaul Mukamel Novel Ultrafast Molecular Imaging Based on the Combination of X-ray and Electron Diffraction, The Journal of Physical Chemistry A, Volume 127 (2023) no. 3, p. 835 | DOI:10.1021/acs.jpca.2c08024
  • Raphael Finger; Thomas C. Hansen; Holger Kohlmann A double-walled sapphire single-crystal gas-pressure cell (type III) for in situ neutron diffraction, Journal of Applied Crystallography, Volume 55 (2022) no. 1, p. 67 | DOI:10.1107/s1600576721012048
  • Haiwang Yong; Daniel Keefer; Shaul Mukamel Imaging Purely Nuclear Quantum Dynamics in Molecules by Combined X-ray and Electron Diffraction, Journal of the American Chemical Society, Volume 144 (2022) no. 17, p. 7796 | DOI:10.1021/jacs.2c01311
  • Huibo Wang; De Ning; Litong Wang; Heng Li; Qingyuan Li; Mingzheng Ge; Junyan Zou; Shi Chen; Huaiyu Shao; Yuekun Lai; Yanyan Zhang; Guichuan Xing; Wei Kong Pang; Yuxin Tang In Operando Neutron Scattering Multiple‐Scale Studies of Lithium‐Ion Batteries, Small, Volume 18 (2022) no. 19 | DOI:10.1002/smll.202107491
  • Sebastian Ehrling; Irena Senkovska; Volodymyr Bon; Khoa Dang Nguyen; Hiroki Miura; Stefan Kaskel Flexibility and Switchable Porosity in Metal-Organic Frameworks: Phenomena, Characterization and Functions, Comprehensive Coordination Chemistry III (2021), p. 328 | DOI:10.1016/b978-0-08-102688-5.00115-x
  • Raphael Finger; Nadine Kurtzemann; Thomas C. Hansen; Holger Kohlmann Design and use of a sapphire single-crystal gas-pressure cell forin situneutron powder diffraction, Journal of Applied Crystallography, Volume 54 (2021) no. 3, p. 839 | DOI:10.1107/s1600576721002685
  • Natalia A. Río-López; Patricia Lázpita; Daniel Salazar; Viktor I. Petrenko; Fernando Plazaola; Volodymyr Chernenko; Jose M. Porro Neutron Scattering as a Powerful Tool to Investigate Magnetic Shape Memory Alloys: A Review, Metals, Volume 11 (2021) no. 5, p. 829 | DOI:10.3390/met11050829
  • Volodymyr Bon; Eike Brunner; Andreas Pöppl; Stefan Kaskel Unraveling Structure and Dynamics in Porous Frameworks via Advanced In Situ Characterization Techniques, Advanced Functional Materials, Volume 30 (2020) no. 41 | DOI:10.1002/adfm.201907847
  • Antony Joseph Neutron spectroscopy techniques, Micro and Nanostructured Composite Materials for Neutron Shielding Applications (2020), p. 355 | DOI:10.1016/b978-0-12-819459-1.00013-1
  • Bhawana Jain; Sunita Singh; Anupama Asthana; Ajaya Kumar Singh; Md. Abu Bin Hasan Susan Analytical Investigations in Rechargeable Batteries, Rechargeable Batteries (2020), p. 217 | DOI:10.1002/9781119714774.ch11
  • Alok M. Tripathi; Wei-Nien Su; Bing Joe Hwang In situanalytical techniques for battery interface analysis, Chemical Society Reviews, Volume 47 (2018) no. 3, p. 736 | DOI:10.1039/c7cs00180k
  • Garrett E. Granroth; Ke An; Hillary L. Smith; Pamela Whitfield; Joerg C. Neuefeind; Jooseop Lee; Wenduo Zhou; Vladislav N. Sedov; Peter F. Peterson; Andre Parizzi; Harley Skorpenske; Steven M. Hartman; Ashfia Huq; Douglas L. Abernathy Event-based processing of neutron scattering data at the Spallation Neutron Source, Journal of Applied Crystallography, Volume 51 (2018) no. 3, p. 616 | DOI:10.1107/s1600576718004727
  • A. Götze; H. Auer; R. Finger; T.C. Hansen; H. Kohlmann A sapphire single-crystal cell for in situ neutron powder diffraction of solid-gas reactions, Physica B: Condensed Matter, Volume 551 (2018), p. 395 | DOI:10.1016/j.physb.2017.11.024
  • David S. Li; Yi-Ting Lee; Yuyin Xi; Ivan Pelivanov; Matthew O’Donnell; Lilo D. Pozzo A small-angle scattering environment forin situultrasound studies, Soft Matter, Volume 14 (2018) no. 25, p. 5283 | DOI:10.1039/c8sm01000e
  • Holger Kohlmann 100 yearsin situdiffraction, Zeitschrift für Kristallographie - Crystalline Materials, Volume 232 (2017) no. 12, p. 843 | DOI:10.1515/zkri-2017-2114
  • Henry Auer; Holger Kohlmann In situ Investigations on the Formation and Decomposition of KSiH3 and CsSiH3, Zeitschrift für anorganische und allgemeine Chemie, Volume 643 (2017) no. 14, p. 945 | DOI:10.1002/zaac.201700164
  • Jacques Huot; Radovan Černý Neutron Powder Diffraction, Neutron Scattering and Other Nuclear Techniques for Hydrogen in Materials (2016), p. 31 | DOI:10.1007/978-3-319-22792-4_3
  • Francesco Dolci; Emilio Napolitano Chapter 6 In situ Powder Diffraction for the Study of Hydrogen Storage Materials: A General Introduction, Structural Characterization Techniques (2016), p. 161 | DOI:10.1201/9781315364865-7
  • Matteo Bianchini; François Fauth; Emmanuelle Suard; Jean-Bernard Leriche; Christian Masquelier; Laurence Croguennec Spinel materials for Li-ion batteries: new insights obtained byoperandoneutron and synchrotron X-ray diffraction, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Volume 71 (2015) no. 6, p. 688 | DOI:10.1107/s2052520615017199
  • Thomas C. Hansen; Holger Kohlmann Chemical Reactions followed by in situ Neutron Powder Diffraction, Zeitschrift für anorganische und allgemeine Chemie, Volume 640 (2014) no. 15, p. 3044 | DOI:10.1002/zaac.201400359
  • Gergely Nagy; László Kovács; Renáta Ünnep; Ottó Zsiros; László Almásy; László Rosta; Peter Timmins; Judith Peters; Dorthe Posselt; Győző Garab Kinetics of structural reorganizations in multilamellar photosynthetic membranes monitored by small-angle neutron scattering, The European Physical Journal E, Volume 36 (2013) no. 7 | DOI:10.1140/epje/i2013-13069-0
  • C. Michael Roland Neutron Scattering in the Analysis of PolymersUpdate based on the original article by D. G. Bucknall,Encyclopedia of Analytical Chemistry, © 2000, John Wiley Sons, Ltd., Encyclopedia of Analytical Chemistry (2012) | DOI:10.1002/9780470027318.a2022.pub2
  • M. B. HOLCOMB; S. POLISETTY; A. FRAILE RODRÍGUEZ; V. GOPALAN; R. RAMESH INVESTIGATING ELECTRIC FIELD CONTROL OF MAGNETISM WITH NEUTRON SCATTERING, NONLINEAR OPTICS AND SYNCHROTRON X-RAY SPECTROMICROSCOPY, International Journal of Modern Physics B, Volume 26 (2012) no. 10, p. 1230004 | DOI:10.1142/s0217979212300046
  • Andreas Leineweber; Eric J. Mittemeijer Kinetics of Phase Transformations and of Other Time‐Dependent Processes in Solids Analyzed by Powder Diffraction, Modern Diffraction Methods (2012), p. 321 | DOI:10.1002/9783527649884.ch11
  • Volodymyr Yartys; Roman Denys; Jan Petter Maehlen; Colin J Webb; Evan MacA Gray; Tomas Blach; Andrey A. Poletaev; Jan Ketil Solberg; Olivier Isnard Nanostructured Metal Hydrides for Hydrogen Storage Studied by In Situ Synchrotron and Neutron Diffraction, MRS Proceedings, Volume 1262 (2010) | DOI:10.1557/proc-1262-w04-01
  • Materials Characterization, Waste Immobilization in Glass and Ceramic Based Hosts (2010), p. 75 | DOI:10.1002/9781444319354.ch4
  • Olivier Isnard Neutron Scattering of Magnetic Materials, Nanoscale Magnetic Materials and Applications (2009), p. 123 | DOI:10.1007/978-0-387-85600-1_5

Cité par 32 documents. Sources : Crossref

Commentaires - Politique