Comptes Rendus
Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 53-66.

This paper provides an overview of two potential applications of carbon nanotube devices in microwave technology. Firstly, the main structural, mechanical, thermal and electronic properties of carbon nanotubes are briefly reviewed. Then, the possibilities offered by metallic carbon nanotubes as nano-antennas in the E- and W-bands and further are investigated: comparison with macroscopic wire antennas is made, the major advantages brought by nanotubes but also technical issues to be addressed are discussed. Finally, the integration of carbon nanotubes in nano-electro-mechanical-systems (NEMS) is studied through nano-switches: the contribution of carbon nanotubes is detailed, state-of-the-art is described, as well as our future approaches for such nano-devices.

Ce papier présente une vue d'ensemble de deux applications potentielles des nanotubes de carbone pour les technologies micro-onde. Les principales propriétés structurelles, mécaniques, thermiques et électroniques des nanotubes de carbone sont d'abord brièvement rappelées. Puis, les possibilités offertes par les nanotubes de carbone métalliques utilisés comme nano-antennes entre 60 et 110 GHz et au-delà sont examinées : nous effectuons une comparaison avec les antennes filaires classiques puis nous discutons des avantages apportés par les nanotubes mais aussi des problèmes à lever. Enfin, nous évoquons l'intégration des nanotubes de carbone dans les systèmes nano-électro-mécaniques (NEMS) par le biais des nano-commutateurs : l'apport des nanotubes dans ces systèmes est suivi d'une revue de l'état de l'art ainsi que de la description de l'orientation de nos travaux pour la réalisation de ces futurs nano-systèmes.

Published online:
DOI: 10.1016/j.crhy.2008.01.001
Keywords: Carbon nanotube, Nanotechnology, Microwave, Dipole antenna, Switch, NEMS
Mot clés : Nanotube de carbone, Nanotechnologie, Micro-onde, Antenne dipolaire, Commutateur, NEMS

Sébastien Demoustier 1; Eric Minoux 1; Matthieu Le Baillif 1; Michael Charles 1; Afshin Ziaei 1

1 Thales Research & Technology, route départementale 128, 91767 Palaiseau cedex, France
@article{CRPHYS_2008__9_1_53_0,
     author = {S\'ebastien Demoustier and Eric Minoux and Matthieu Le Baillif and Michael Charles and Afshin Ziaei},
     title = {Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches},
     journal = {Comptes Rendus. Physique},
     pages = {53--66},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2008.01.001},
     language = {en},
}
TY  - JOUR
AU  - Sébastien Demoustier
AU  - Eric Minoux
AU  - Matthieu Le Baillif
AU  - Michael Charles
AU  - Afshin Ziaei
TI  - Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 53
EP  - 66
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.01.001
LA  - en
ID  - CRPHYS_2008__9_1_53_0
ER  - 
%0 Journal Article
%A Sébastien Demoustier
%A Eric Minoux
%A Matthieu Le Baillif
%A Michael Charles
%A Afshin Ziaei
%T Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches
%J Comptes Rendus. Physique
%D 2008
%P 53-66
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2008.01.001
%G en
%F CRPHYS_2008__9_1_53_0
Sébastien Demoustier; Eric Minoux; Matthieu Le Baillif; Michael Charles; Afshin Ziaei. Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 53-66. doi : 10.1016/j.crhy.2008.01.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.001/

[1] S. Iijima Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58

[2] A. Raychowdhury; K. Roy Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies, IEEE T. Comp. Aided Design, Volume 25 (2006) no. 1, pp. 58-65

[3] J. Bernholc; D. Brenner; M. Buongiorno Nardelli; V. Meunier; C. Roland Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res., Volume 32 (2002), pp. 347-375

[4] F. Arai, C. Ng, P. Liu, L. Dong, Y. Imaizumi, K. Maeda, H. Maruyama, A. Ichikawa, T. Fukuda, Ultra-small site temperature sensing, by carbon nanotube thermal probes, in: 2004 4th IEEE Conference on Nanotechnology

[5] K. Zhang, M.M.F. Yuen, N. Wang, J.Y. Miao, D.G.W. Xiao, H.B. Fan, Thermal interface material with aligned CNT and its application in HB-LED packaging, in: Electronic Components and Technology Conference, 2006. Proceedings. 56th, 30 May–2 June 2006, pp. 177–182

[6] E. Pop; S. Sinha; K.E. Goodson Heat generation and transport in nanometer-scale transistors, Proc. IEEE, Volume 94 (2006) no. 8, pp. 1587-1601

[7] Understanding Carbon Nanotubes From Basic to Application (A. Loiseau; P. Launois; P. Petit; S. Roche; P. Salvetat, eds.), Springer, 2006, pp. 428-432

[8] A. Shakouri Nanoscale thermal transport and microrefrigerators on a chip, Proc. IEEE, Volume 94 (2006) no. 8

[9] D.-A. Borca-Tasciuc, L. Pietruszka, T. Borca-Tasciuc, R. Vajtai, P.M. Ajayan, Thermal transport measurements in multi-wall carbon nanotube strands using the 3w method, in: IEEE 21st IEEE SEMI-THERM Symposium, 2005

[10] C.K.M. Fung, W.I. Li, Ultra-low-power and high-frequency-response carbon, nanotube based MEMS thermal sensors, in: Proceedings of the 2003 IEEE/RSJ Inter. Conference on Intelligent Robots and Systems, Las Vegas, NV, October 2003

[11] W. Steinhogl; G. Schindler; G. Steinlesberger; M. Traving; M. Engelhardt Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys., Volume 97 (2005) no. 2

[12] S. Li; Z. Yu; P.J. Burke Electrical properties of 0.4 cm long single walled carbon nanotubes, Nano Lett., Volume 4 (2004) no. 10, pp. 2003-2007

[13] A. Naeemi, G. Huang, J.D. Meindl, Performance modelling for carbon nanotube interconnects in on-chip power distribution, in: Electronic Component and Technology Conference, 2007. ECTC '07. Proceedings. 57th, May 29 2007–June 1 2007, pp. 420–428

[14] Z. Yu; P.J. Burke Microwave transport in metallic single-walled carbon nanotubes, Nano Lett., Volume 5 (2005) no. 7, pp. 1403-1406

[15] P.J. Burke An RF circuit model for carbon nanotubes, IEEE T. Nanotechnologies, Volume 2 ( March 2004 ) no. 1, pp. 55-58 (With erratum in IEEE T. Nanotechnologies, 3, 2, pp. 331)

[16] P.J. Burke Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes, IEEE T. Nanotechnologies, Volume 1 ( March 2004 ) no. 3, pp. 129-144 (With erratum in IEEE T. Nanotechnologies, 3, 2, pp. 331)

[17] G.W. Hanson Fundamental transmitting properties of carbon nanotube antennas, IEEE T. Antennas Propagation, Volume 53 ( November 2005 ) no. 11

[18] P.J. Burke; S. Li; Z. Yu Quantitative theory of nanowire and nanotube antenna performance, IEEE T. Nanotechnology, Volume 5 ( July 2006 ) no. 4

[19] D.K. Ferry; S.M. Goodnick Transport in Nanostructures, Cambridge University Press, Cambridge, UK, 1999

[20] P.J. Burke, Z. Yu, C. Rutherglen, Carbon nanotubes for RF and microwaves, in: 13th GAAS®Symposium – Paris, 2005

[21] N. Fichtner, P. Russer, On the possibility of nanowire antennas, in: Proc. of the 36th European Microwave Conference, Manchester, 2006

[22] G.Y. Slepyan; S.A. Makismenko Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions and surface wave propagation, Phys. Rev., Volume 2 ( 15 December 1999 ) no. 1

[23] C.A. Balanis Antenna Theory, Analysis and Design, Wiley-Interscience, 2005

[24] K.E. Petersen Micromechanical switches on silicon, IBM J. Res. Develop., Volume 23 (1979) no. 4, p. 376

[25] P. Kim; C.M. Lieber Nanotubes nanotweezers, Science, Volume 286 (1999), p. 2148

[26] T. Rueckes et al. Carbon nanotube-based nonvolatile random access memory for molecular computing, Science, Volume 289 (2000), p. 94

[27] R.H. Baughman et al. Carbon nanotube actuators, Science, Volume 284 (1999), p. 1340

[28] L.M. Jonsson et al. High frequency properties of a CNT based nanorelay, Nanotechnology, Volume 15 (2004), p. 1497

[29] S.W. Lee et al. A three-terminal carbon nanorelay, Nano Lett., Volume 4 (2004), p. 2027

[30] S.N. Cha et al. Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube, Appl. Phys. Lett., Volume 86 (2005), p. 083105

[31] S. Bhunia et al. Complimentary nano-electromechanical carbon nanotube switches, ECS Trans., Volume 3 (2006) no. 10, p. 375

[32] E. Dujardin et al. Self-assembled switches based on electroactuated multiwall nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 193107

[33] R. Lefèvre et al. Scaling law in carbon nanotube electromechanical devices, Phys. Rev. Lett., Volume 95 (2005), p. 185504

[34] A.B. Kaul et al. Electromechanical carbon nanotube switches for high-frequency applications, Nano Lett., Volume 6 (2006), p. 942

[35] J.E. Jang et al. Nanoelectromechanical switches with vertically aligned carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 163114

[36] B.A. Cruden et al. Vertically oriented carbon nanofiber based nanoelectromechanical switch, IEEE Trans. Nanotech., Volume 5 (2006), p. 1536

[37] A. Ziaei, RF-MEMS switches and application (invited), in: IEEE International Microwave Symposium MTT-S 2005

[38] M. Chhowalla J. Appl. Phys., 90 (2001), p. 5308

[39] K.B.K. Teo Nanotechnology, 14 (2003), p. 204

[40] E. Minoux; O. Groening; K.B.K. Teo; S.H. Dalal; L. Gangloff; J.-P. Schnell; L. Hudanski; I.Y.Y. Bu; P. Vincent; P. Legagneux; G.A.J. Amaratunga; W.I. Milne Achieving high-current carbon nanotube emitters, Nano Lett., Volume 5 (2005) no. 11, p. 2135

Cited by Sources:

Comments - Policy