This paper provides an overview of two potential applications of carbon nanotube devices in microwave technology. Firstly, the main structural, mechanical, thermal and electronic properties of carbon nanotubes are briefly reviewed. Then, the possibilities offered by metallic carbon nanotubes as nano-antennas in the E- and W-bands and further are investigated: comparison with macroscopic wire antennas is made, the major advantages brought by nanotubes but also technical issues to be addressed are discussed. Finally, the integration of carbon nanotubes in nano-electro-mechanical-systems (NEMS) is studied through nano-switches: the contribution of carbon nanotubes is detailed, state-of-the-art is described, as well as our future approaches for such nano-devices.
Ce papier présente une vue d'ensemble de deux applications potentielles des nanotubes de carbone pour les technologies micro-onde. Les principales propriétés structurelles, mécaniques, thermiques et électroniques des nanotubes de carbone sont d'abord brièvement rappelées. Puis, les possibilités offertes par les nanotubes de carbone métalliques utilisés comme nano-antennes entre 60 et 110 GHz et au-delà sont examinées : nous effectuons une comparaison avec les antennes filaires classiques puis nous discutons des avantages apportés par les nanotubes mais aussi des problèmes à lever. Enfin, nous évoquons l'intégration des nanotubes de carbone dans les systèmes nano-électro-mécaniques (NEMS) par le biais des nano-commutateurs : l'apport des nanotubes dans ces systèmes est suivi d'une revue de l'état de l'art ainsi que de la description de l'orientation de nos travaux pour la réalisation de ces futurs nano-systèmes.
Mot clés : Nanotube de carbone, Nanotechnologie, Micro-onde, Antenne dipolaire, Commutateur, NEMS
Sébastien Demoustier 1; Eric Minoux 1; Matthieu Le Baillif 1; Michael Charles 1; Afshin Ziaei 1
@article{CRPHYS_2008__9_1_53_0, author = {S\'ebastien Demoustier and Eric Minoux and Matthieu Le Baillif and Michael Charles and Afshin Ziaei}, title = {Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches}, journal = {Comptes Rendus. Physique}, pages = {53--66}, publisher = {Elsevier}, volume = {9}, number = {1}, year = {2008}, doi = {10.1016/j.crhy.2008.01.001}, language = {en}, }
TY - JOUR AU - Sébastien Demoustier AU - Eric Minoux AU - Matthieu Le Baillif AU - Michael Charles AU - Afshin Ziaei TI - Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches JO - Comptes Rendus. Physique PY - 2008 SP - 53 EP - 66 VL - 9 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2008.01.001 LA - en ID - CRPHYS_2008__9_1_53_0 ER -
%0 Journal Article %A Sébastien Demoustier %A Eric Minoux %A Matthieu Le Baillif %A Michael Charles %A Afshin Ziaei %T Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches %J Comptes Rendus. Physique %D 2008 %P 53-66 %V 9 %N 1 %I Elsevier %R 10.1016/j.crhy.2008.01.001 %G en %F CRPHYS_2008__9_1_53_0
Sébastien Demoustier; Eric Minoux; Matthieu Le Baillif; Michael Charles; Afshin Ziaei. Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 53-66. doi : 10.1016/j.crhy.2008.01.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.01.001/
[1] Helical microtubules of graphitic carbon, Nature, Volume 354 (1991), pp. 56-58
[2] Modeling of metallic carbon-nanotube interconnects for circuit simulations and a comparison with Cu interconnects for scaled technologies, IEEE T. Comp. Aided Design, Volume 25 (2006) no. 1, pp. 58-65
[3] Mechanical and electrical properties of nanotubes, Annu. Rev. Mater. Res., Volume 32 (2002), pp. 347-375
[4] F. Arai, C. Ng, P. Liu, L. Dong, Y. Imaizumi, K. Maeda, H. Maruyama, A. Ichikawa, T. Fukuda, Ultra-small site temperature sensing, by carbon nanotube thermal probes, in: 2004 4th IEEE Conference on Nanotechnology
[5] K. Zhang, M.M.F. Yuen, N. Wang, J.Y. Miao, D.G.W. Xiao, H.B. Fan, Thermal interface material with aligned CNT and its application in HB-LED packaging, in: Electronic Components and Technology Conference, 2006. Proceedings. 56th, 30 May–2 June 2006, pp. 177–182
[6] Heat generation and transport in nanometer-scale transistors, Proc. IEEE, Volume 94 (2006) no. 8, pp. 1587-1601
[7] Understanding Carbon Nanotubes From Basic to Application (A. Loiseau; P. Launois; P. Petit; S. Roche; P. Salvetat, eds.), Springer, 2006, pp. 428-432
[8] Nanoscale thermal transport and microrefrigerators on a chip, Proc. IEEE, Volume 94 (2006) no. 8
[9] D.-A. Borca-Tasciuc, L. Pietruszka, T. Borca-Tasciuc, R. Vajtai, P.M. Ajayan, Thermal transport measurements in multi-wall carbon nanotube strands using the 3w method, in: IEEE 21st IEEE SEMI-THERM Symposium, 2005
[10] C.K.M. Fung, W.I. Li, Ultra-low-power and high-frequency-response carbon, nanotube based MEMS thermal sensors, in: Proceedings of the 2003 IEEE/RSJ Inter. Conference on Intelligent Robots and Systems, Las Vegas, NV, October 2003
[11] Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller, J. Appl. Phys., Volume 97 (2005) no. 2
[12] Electrical properties of 0.4 cm long single walled carbon nanotubes, Nano Lett., Volume 4 (2004) no. 10, pp. 2003-2007
[13] A. Naeemi, G. Huang, J.D. Meindl, Performance modelling for carbon nanotube interconnects in on-chip power distribution, in: Electronic Component and Technology Conference, 2007. ECTC '07. Proceedings. 57th, May 29 2007–June 1 2007, pp. 420–428
[14] Microwave transport in metallic single-walled carbon nanotubes, Nano Lett., Volume 5 (2005) no. 7, pp. 1403-1406
[15] An RF circuit model for carbon nanotubes, IEEE T. Nanotechnologies, Volume 2 ( March 2004 ) no. 1, pp. 55-58 (With erratum in IEEE T. Nanotechnologies, 3, 2, pp. 331)
[16] Lüttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes, IEEE T. Nanotechnologies, Volume 1 ( March 2004 ) no. 3, pp. 129-144 (With erratum in IEEE T. Nanotechnologies, 3, 2, pp. 331)
[17] Fundamental transmitting properties of carbon nanotube antennas, IEEE T. Antennas Propagation, Volume 53 ( November 2005 ) no. 11
[18] Quantitative theory of nanowire and nanotube antenna performance, IEEE T. Nanotechnology, Volume 5 ( July 2006 ) no. 4
[19] Transport in Nanostructures, Cambridge University Press, Cambridge, UK, 1999
[20] P.J. Burke, Z. Yu, C. Rutherglen, Carbon nanotubes for RF and microwaves, in: 13th GAAS®Symposium – Paris, 2005
[21] N. Fichtner, P. Russer, On the possibility of nanowire antennas, in: Proc. of the 36th European Microwave Conference, Manchester, 2006
[22] Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions and surface wave propagation, Phys. Rev., Volume 2 ( 15 December 1999 ) no. 1
[23] Antenna Theory, Analysis and Design, Wiley-Interscience, 2005
[24] Micromechanical switches on silicon, IBM J. Res. Develop., Volume 23 (1979) no. 4, p. 376
[25] Nanotubes nanotweezers, Science, Volume 286 (1999), p. 2148
[26] et al. Carbon nanotube-based nonvolatile random access memory for molecular computing, Science, Volume 289 (2000), p. 94
[27] et al. Carbon nanotube actuators, Science, Volume 284 (1999), p. 1340
[28] et al. High frequency properties of a CNT based nanorelay, Nanotechnology, Volume 15 (2004), p. 1497
[29] et al. A three-terminal carbon nanorelay, Nano Lett., Volume 4 (2004), p. 2027
[30] et al. Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube, Appl. Phys. Lett., Volume 86 (2005), p. 083105
[31] et al. Complimentary nano-electromechanical carbon nanotube switches, ECS Trans., Volume 3 (2006) no. 10, p. 375
[32] et al. Self-assembled switches based on electroactuated multiwall nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 193107
[33] et al. Scaling law in carbon nanotube electromechanical devices, Phys. Rev. Lett., Volume 95 (2005), p. 185504
[34] et al. Electromechanical carbon nanotube switches for high-frequency applications, Nano Lett., Volume 6 (2006), p. 942
[35] et al. Nanoelectromechanical switches with vertically aligned carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 163114
[36] et al. Vertically oriented carbon nanofiber based nanoelectromechanical switch, IEEE Trans. Nanotech., Volume 5 (2006), p. 1536
[37] A. Ziaei, RF-MEMS switches and application (invited), in: IEEE International Microwave Symposium MTT-S 2005
[38] J. Appl. Phys., 90 (2001), p. 5308
[39] Nanotechnology, 14 (2003), p. 204
[40] Achieving high-current carbon nanotube emitters, Nano Lett., Volume 5 (2005) no. 11, p. 2135
Cited by Sources:
Comments - Policy