Comptes Rendus
Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance
Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 67-77.

Carbon nanotubes (CNT) appear as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of a carbon nanotube field effect transistor (CNTFET). In this work, we present results of a Monte Carlo simulation of a coaxially gated CNTFET, including electron–phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of the electron mean-free-path. To highlight the potential of the high performance level of CNTFET, we then perform a study of the DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of a Si nanowire MOSFET.

Le nanotube de carbone (CNT) est à ce jour l'un des candidats les plus prometteurs pour faire passer le transistor à effet de champ (FET) à l'échelle du nanomètre. Des recherches intensives sont en cours afin de déterminer les caractéristiques statiques et dynamiques des transistors à nanotube de carbone (CNTFET). Nous présentons dans cette étude des résultats de simulations de CTNFET par la méthode Monte-Carlo avec prise en compte des interactions électrons-phonons. Un des objectifs est de présenter les propriétés du transport pouvant être atteintes dans ce matériau par une évaluation du libre parcours moyen des porteurs. Une étude des caractéristiques statiques du CNTFET est réalisée et permet de mettre en avant l'influence du contrôle capacitif par la grille sur les performances. Enfin nous comparons les performances d'un CNTFET avec celles obtenues par simulation d'un transistor à nanofil de Silicium.

Published online:
DOI: 10.1016/j.crhy.2007.11.009
Keywords: Monte Carlo simulation, CNTFET, Delay time, Cutoff frequency, Electron–phonon scattering, Quantum capacitance
Mot clés : Simulation Monte Carlo, CNTFET, Délai intrinsèque, Fréquence de transition, Interaction electron–phonon, Capacité quantique

Hugues Cazin d'Honincthun 1, 2; Sylvie Galdin-Retailleau 1; Arnaud Bournel 1; Philippe Dollfus 1; Jean-Philippe Bourgoin 2

1 Institut d'électronique fondamentale, CNRS UMR 8622, Université Paris-Sud, bâtiment 220, 91405 Orsay cedex, France
2 Molecular Electronics Laboratory, SPEC, CEA Saclay, 91191 Gif-sur-Yvette, France
@article{CRPHYS_2008__9_1_67_0,
     author = {Hugues Cazin d'Honincthun and Sylvie Galdin-Retailleau and Arnaud Bournel and Philippe Dollfus and Jean-Philippe Bourgoin},
     title = {Monte {Carlo} study of coaxially gated {CNTFETs:} capacitive effects and dynamic performance},
     journal = {Comptes Rendus. Physique},
     pages = {67--77},
     publisher = {Elsevier},
     volume = {9},
     number = {1},
     year = {2008},
     doi = {10.1016/j.crhy.2007.11.009},
     language = {en},
}
TY  - JOUR
AU  - Hugues Cazin d'Honincthun
AU  - Sylvie Galdin-Retailleau
AU  - Arnaud Bournel
AU  - Philippe Dollfus
AU  - Jean-Philippe Bourgoin
TI  - Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 67
EP  - 77
VL  - 9
IS  - 1
PB  - Elsevier
DO  - 10.1016/j.crhy.2007.11.009
LA  - en
ID  - CRPHYS_2008__9_1_67_0
ER  - 
%0 Journal Article
%A Hugues Cazin d'Honincthun
%A Sylvie Galdin-Retailleau
%A Arnaud Bournel
%A Philippe Dollfus
%A Jean-Philippe Bourgoin
%T Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance
%J Comptes Rendus. Physique
%D 2008
%P 67-77
%V 9
%N 1
%I Elsevier
%R 10.1016/j.crhy.2007.11.009
%G en
%F CRPHYS_2008__9_1_67_0
Hugues Cazin d'Honincthun; Sylvie Galdin-Retailleau; Arnaud Bournel; Philippe Dollfus; Jean-Philippe Bourgoin. Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 67-77. doi : 10.1016/j.crhy.2007.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.009/

[1] A. Javey et al. High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett., Volume 92 (2004), p. 106804

[2] J. Chen et al., Self-aligned carbon nanotube transistors with novel chemical doping, in: Proc. IEEE IEDM Tech. Dig. 695 (2004)

[3] T. Durkop et al. Extraordinary mobility in semi-conducting carbon nanotubes, Nano Lett., Volume 4–35 (2004)

[4] M. Radosavljevic et al. High performance of potassium n-doped carbon nanotube field-effect transistor, Appl. Phys. Lett., Volume 84 (2004), p. 3693

[5] Y. M Lin et al. High-performance dual-gate carbon nanotube FETs with 40-nm gate length, IEEE Electron Dev. Lett., Volume 26 (2005), p. 823

[6] A. Javey et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts, Nano Lett., Volume 5 (2005), p. 345

[7] A. Le Louarn et al. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors, Appl. Phys. Lett., Volume 90 (2007), p. 233108

[8] B.M. Kim et al. High-performance carbon nanotube transistors on SrTiO/Si substrates, Appl. Phys. Lett., Volume 84 (2004), p. 1946

[9] J. Appenzeller et al. Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett., Volume 93 (2004), p. 196805

[10] A. Javey et al. Ballistic carbon nanotube field-effect transistors, Nature, Volume 424 (2003), p. 654

[11] J. Guo; M. Lundstrom Role of phonon scattering in carbon nanotube field-effect transistors, Appl. Phys. Lett., Volume 86 (2005), p. 193103

[12] P. Dollfus et al. Effect of discrete impurities on electron transport in ultra-short MOSFET using 3D Monte Carlo simulation, IEEE Trans. Electron Dev., Volume 51 (2004), p. 749

[13] H. Cazin et al. Electron–phonon scattering and ballistic behavior in semiconducting carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 172112

[14] R. Saito et al. Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1988

[15] T. Hertel; G. Moos Electron–phonon interaction in single-wall carbon nanotubes: a time-domain study, Phys. Rev. Lett., Volume 84 (2000), p. 5002

[16] G. Pennington; N. Goldsman Semi-classical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B, Volume 68 (2003), p. 045426

[17] O. Dubay; G. Kresse Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B, Volume 67 (2003), p. 035401

[18] A. Verma et al. Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 123101

[19] M. Machon et al. Strength of radial breathing mode in single-walled carbon nanotubes, Phys. Rev. B, Volume 71 (2005), p. 035416

[20] V. Perebeinos et al. Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett., Volume 94 (2005), p. 086802

[21] J. Saint Martin; A. Bournel; P. Dollfus On the ballistic transport in nanometer-scaled DG MOSFETs, IEEE Trans. Electron Dev., Volume 51 (2004), p. 1148

[22] P. Lugli; D.K. Ferry Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors, IEEE Trans. Electron Dev., Volume 32 (1985), p. 2431

[23] Y.-M. Lin et al. High-performance carbon nanotube field-effect transistor with tunable polarities, IEEE Trans. Nanotechnol., Volume 4 (2005), p. 481

[24] V. Derycke et al. Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett., Volume 80 (2002), p. 2773

[25] J. Chen et al. Self-aligned carbon nanotube transistors with charge transfer doping, Appl. Phys. Lett., Volume 86 (2005), p. 123108

[26] S. Datta Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1995

[27] S. Luryi Quantum capacitance devices, Appl. Phys. Lett., Volume 52 (1988), p. 501

[28] D.L. John et al. Quantum capacitance in nano-scale device modelling, J. Appl. Phys., Volume 96 (2004), p. 5180

[29] A.G. Petrov et al. Transport in nanotubes: Effect of remote impurity scattering, Phys. Rev. B, Volume 70 (2004), p. 035408

[30] J. Guo et al. Effect of phonon scattering on intrinsic delay and cutoff frequency of carbon nanotube FETs, IEEE Trans. Electron Dev., Volume 53 (2006) no. 10, pp. 2467-2469

[31] G. Fiori; G. Iannaccone A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry, IEEE Trans. Electron Dev., Volume 53 (2006) no. 8, pp. 1782-1788

[32] P.J. Burke AC performance of nanoelectronics: towards a ballistic THz nanotube transistor, Solid State Electron, Volume 48 (2004) no. 11, pp. 1981-1986

[33] S. Hasan High-frequency performance projections for ballistic carbon-nanotube transistors, IEEE Trans. Nanotechnol., Volume 50 (2006) no. 1, pp. 14-22

Cited by Sources:

Comments - Policy