Light sources based on accelerators aim at producing very high brilliance coherent radiation, tuneable from the infrared to X-ray range, with picosecond or femtosecond light pulses.
The first synchrotron light sources were built around storage rings in which a large number of relativistic electrons produce “synchrotron radiation” when their trajectory is subjected to a magnetic field, either in bending magnets or in specific insertion devices (undulators), made of an alternating series of magnets, allowing the number of curvatures to be increased and the radiation to be reinforced.
These “synchrotron radiation” storage rings are now used worldwide (there are more than thirty), and they simultaneously distribute their radiation to several tens of users around the storage ring.
The most effective installations in term of brilliance are the so-called 3rd generation synchrotron radiation light sources. The radiation produced presents pulse durations of the order of a few tens of ps, at a high rate (of the order of MHz); it is tuneable over a large range, depending on the magnetic field and the electron beam energy and its polarisation is adjustable (in the VUV-soft-X range). Generally, a very precise spectral selection is made by the users with a monochromator.
The single pass linear accelerators can produce very short electron bunches (). The beam of very high electronic density is sent into successive undulator modules, reinforcing the radiation's longitudinal coherence, produced according to a Free Electron Laser (FEL) scheme by the interaction between the electron bunch and a light wave. The very high peak brilliance justifies their designation as 4th generation sources. The number of users is smaller because an electron pulse produces a radiation burst towards only one beamline. Energy Recovery Linacs (ERL) let the beam pass several times in the accelerator structures either to recover the energy or to accelerate the electrons during several turns, and thus provide subpicosecond beams for a greater number of users.
A state-of-the-art of X sources using conventional (and not laser plasma based) accelerators is given here, underlying the performance already reached or forecast and the essential challenges.
Les sources de lumière reposant sur l'emploi d'un accélérateur permettent de produire un rayonnement cohérent de très haute brillance, accordable en longueur d'onde depuis l'infrarouge jusqu'aux rayons X, avec des impulsions picoseconde ou femtoseconde (fs).
Les premières sources de rayonnement synchrotron se sont installées autour d'anneaux de stockage dans lesquels un grand nombre d'électrons d'énergie relativiste produisent du « rayonnement synchrotron » lorsque leur trajectoire est soumise à l'action d'un champ magnétique, soit dans les aimants de courbure, soit dans des éléments magnétiques spécifiques (onduleurs) constitués d'une succession d'aimants alternés, permettant de multiplier le nombre de courbures de trajectoire pour renforcer le rayonnement.
Ces anneaux « synchrotron » sont couramment utilisés de par le monde (il en existe plus d'une trentaine), car ils distribuent leur rayonnement simultanément à plusieurs dizaines d'utilisateurs répartis autour de l'anneau.
Les installations les plus performantes en terme de brillance sont les sources de rayonnement synchrotron dites de troisième génération. Le rayonnement produit présente des durées d'impulsion de l'ordre de quelques dizaines de ps, à haute cadence (de l'ordre du MHz), est accordable sur une large gamme, dépendant du champ magnétique et de l'énergie du faisceau d'électrons, et sa polarisation est ajustable (dans le domaine VUV-X mous). En général, une sélection spectrale très fine est effectuée par les utilisateurs à l'aide d'un monochromateur.
Les accélérateurs linéaires à simple passage offrent la possibilité de produire des paquets d'électrons de durée très courte (). Le faisceau de très haute densité électronique est envoyé dans une succession de modules d'onduleurs, permettant de renforcer la cohérence longitudinale du rayonnement produit selon un schéma de laser à électrons libres par interaction entre le paquet d'électron et une onde lumineuse. Les brillances crêtes très élevées justifient leur appellation de sources de quatrième génération. Le nombre d'utilisateurs est plus restreint, car une impulsion d'électrons produit une bouffée de rayonnement en direction d'une seule ligne de lumière. Les accélérateurs linéaires à recirculation permettent de faire passer le faisceau plusieurs fois dans les structures accélératrices soit pour en récupérer l'énergie (ERL : Energy Recovery Linac) soit pour l'accélérer sur plusieurs tours, et fournir ainsi des faisceaux subpicoseconde à un plus grand nombre d'utilisateurs.
Un état de l'art des sources X employant des accélérateurs conventionnels est donné, en soulignant les performances atteintes ou visées, et les enjeux essentiels.
Mot clés : Rayonnement synchrotron, Accélérateur linéaire, LINAC, Anneau de stockage, Laser à électrons libres
Marie-Emmanuelle Couprie 1; Jean-Marc Filhol 1
@article{CRPHYS_2008__9_5-6_487_0, author = {Marie-Emmanuelle Couprie and Jean-Marc Filhol}, title = {X radiation sources based on accelerators}, journal = {Comptes Rendus. Physique}, pages = {487--506}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2008.04.001}, language = {en}, }
Marie-Emmanuelle Couprie; Jean-Marc Filhol. X radiation sources based on accelerators. Comptes Rendus. Physique, Volume 9 (2008) no. 5-6, pp. 487-506. doi : 10.1016/j.crhy.2008.04.001. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.04.001/
[1] An overview of synchrotron radiation research (H. Winick; S. Doniach, eds.), Synchrotron Radiation Research, Plenum Press, New York and London, 1980, pp. 1-10
[2] Synchrotron radiation sources–present capabilities and future directions, J. Synchrotron Radiation, Volume 5 (1998), pp. 168-175
[3] Development of synchrotron radiation storage rings, J. Synchrotron Radiation, Volume 5 (1998), pp. 179-183
[4] Undulators, Wigglers and their Applications (H. Onuki; P. Elleaume, eds.), Taylor and Francis, 2003, p. 438
[5] Nuovo Cimento B, 18 (1973), p. 72
[6] Phys. Rev. Lett., 76 (1996), p. 912
[7] et al. Nucl. Instrum. Methods A, 425 (1999), p. 385
[8] M. Cornacchia, H. Winick, Workshop on Fourth Generation Light Source, 24–27 February 1992, SSRL Report 92/02, Stanford Synchrotron Research Laboratory, USA; 10th ICFA Workshop on 4th Generation Light Sources, chaired by J.L. Laclare, 22–25 January 1996, ESRF (France), http://www.esrf.eu/info/science/annrep/95-96/report/mach/icfa/icfa.htm, Future Light Source Workshop, 37th ICFA Advanced Beam Dynamics Workshop on Future Light Sources to be held May 15–19, 2006 in Hamburg, Germany, chaired by Kwang-Je Kim, Jörg Rossbach, http://adweb.desy.de/mpy/FLS2006/proceedings/HTML/SESSION.HTM
[9] Tree dimensional analysis of coherent amplification and self amplified spontaneous emission in free electron laser, Nucl. Instrum. Methods, Volume 17 (1981) no. 15, p. 1371-378
[10] Phys. Quantum Electron., 119 (1984), pp. 277-292
[11] et al. First ultraviolet high-gain harmonic-generation free-electron laser, Nucl. Instrum. Methods A, Volume 44 (1991), p. 5178
[12] High gain harmonic generation of soft X rays with the fresh bunch technique, Nucl. Instrum. Methods A, Volume 393 (1997), p. 96
[13] S. Smith, A review of ERL pototype experience and light source design challenges, in: Proc. EPAC 2006, Edinburg, 2006, pp. 39–46
[14] Laser X-UV en schéma collisionnel OFI à 41.8 nm, Proc. UVX2006, Colleville sur Mer, Éditions de Physique, EDP Sciences, 2006
[15] Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases, J. Opt. Soc. Am. B, Volume 21 (1988) no. 4, p. L31
[16] Plasma perspective on strong-field multiphoton ionization, Phys. Rev. Lett., Volume 49 (1994) no. 3, p. 2117
[17] Generation of coherent X-rays in the water window using 5-femtosecond laser pulses, Science, Volume 79 (1997) no. 16, p. 2967
[18] Measurement of the degree of spatial coherence of high-order harmonics using a fresnel-mirror interferometer, Phys. Rev. A, Volume 77 (1996) no. 23, p. 4756
[19] Temporal coherence of high-order harmonics, Phys. Rev. A, Volume 81 (1998) no. 2, p. 297
[20] Attosecond pulse trains generated using two color laser fields, Phys. Rev. Lett., Volume 421 (2003), p. 611
[21] Hihgh-order tunable sum and difference frequency mixing in the xuv region, J. Phys. B: At. Mol. Opt. Phys., Volume 29 (1996), p. L163
[22] A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam, Phys. Rev. Lett., Volume 51 (1995) no. 6, pp. R4337-429 (Letters to Nature Nature, 431, 2004, pp. 426)
[23] Coherent wake emission of high-order harmonics from overdense plasmas, Phys. Rev. Lett., Volume 96 (2006), p. 125004
[24] Design of a new type of planar undulator for generating variably polarized radiation, Nucl. Inst. Methods A, Volume 331 (1993), pp. 763-767
[25] A. Batrakov, F. Briquez, O. Chubar, I. Churkin, A. Daël, I. Ilyin, Y. Kolokolnikov, O. Marcouillé, F. Marteau, G. Roux, E. Rouvinski, E. Semenov, A. Steshov, M. Valleau, P. Vobly, Elliptical undulators HU256 for synchrotron SOLEIL, in: Proc. Synch. Radiation Instrumentation Conference, Daegu, Mai 2006
[26] J. Chavanne, P. Elleaume, P. VanVaerenbergh, A novel fast switching linear/helical undulator, in: Proc. of the EPAC98 Conference, 22–26 June 1998, pp. 317–319
[27] Rev. Sci. Instrum., 66 (1995) no. 2, pp. 2007-2010
[28] M. Hahn, R. Kersevan, Status of NEG coating at ESRF, in: PAC 2005, JaCow
[29] Physics of Collective Beam Instabilities in High Energy Accelerators, Wiley-Interscience, 1993
[30] R. Nagaoka, Instabilities studies using evaluated wakefields and comparison with observations at SOLEIL, in: EPAC 2006, Vienna, Austria, Glasgow, pp. 2847–2849
[31] J. Jacob, D. Boilot, G. Debut, M. Rossat, J. Pasquaut, M. Juilliard, P. Brédy, P. Bosland, S. Chel, A. Mosnier, M. Maurier, E. Chiaveri, R. Losito, J.M. Filhol, Test of the SOLEIL superconducting cavity prototype on the ESRF ring, in: EPAC 2002, pp. 269–271
[32] M. Abo-Bakr, E. Weihreter, G. Wüstefeld, On the optimum RF frequency for a low energy synchrotron radiation source, in: EPAC 00, pp. 1456–1458
[33] A. Lüdeke, A. Andersson, M. Böge, B. Kalantari, B. Keil, M. Pedrozzi, T. Schilcher, A. Streun, V. Schlott, Status of the Swiis Lingt Source, in: Proc. EPAC 06, Edinburgh, Scotland, pp. 3424–3426
[34] http://www.elettra.trieste.it/
[35] http://www.bessy.de/
[36] http://sls.web.psi.ch/view.php/about/index.html
[37] G. Leblanc, A. Andersson, M. Eriksson, M. Georgsson, L.J. Lindgren, S. Werin, Max-III, a 700 MeV storage ring for synchrotron radiation, in: Proc. EPAC 00, Vienna, Austria, pp. 643–645
[38] http://www.synchrotron-soleil.fr
[39] http://www.diamond.ac.uk/default.htm
[40] http://www.cells.es/
[42] http://www-als.lbl.gov/als/
[44] http://www.srrc.gov.tw/eng/about/index.html
[45] http://www.synchrotron.vic.gov.au/
[46] http://www.lightsources.org/cms/?pid=1000235
[47] http://www.bnl.gov/nsls2/
[48] http://www.esrf.eu/
[50] http://www.spring8.or.jp/
[52] ESLS XIVth meeting, SOLEIL, October 2006
[53] A. Nadji, Absolute minimum emittance optics for Super-ACO, in: EPAC 2000, pp. 1057–1059
[54] Rapport WP1, FLS, Hamburg, http://adweb.desy.de/mpy/FLS2006/proceedings/index.htm
[55] L. Farvacque, J.L. Laclare, C. Limborg, A. Ropert, K. Scheidt, U. Weinrich, Probing some of the issues of fourth generation light source at ESRF, in: EPAC 96
[56] J. Feikes, K. Holldack, P. Kuske, G. Wüstefelf, Compressed electron bunches for THz generation – operating BESSY II in a dedicated low apha mode, in: EPAC 2004, Lucerne, pp. 2290–2292
[57] Science, 287 (2000), p. 2237
[58] K. Harkay et al., in: Proc. 2005 PAC, p. 668
[59] Phys. Rev. ST Acc. Beams, 8 (2005), p. 074001
[60] P. Goudket, Crab Cavity Meeting, 14 April 2005, http://www.astec.ac.uk/rf/rf_crab.htm
[61] Cryogenic permanent magnet undulators, Phys. Rev. ST Acc. Beams, Volume 7 (2004), p. 050702
[62] Workshop, New Frontiers on Insertion Devices, ELETTRA, nov 2006, http://www.elettra.trieste.it/UM14/index.php?n=Main.Programme1stWorkshop
[63] R. Rossmanith, S. Casalbuoni, M. Hagelstein, B. Kostka, A.S. Muller, A year's expêrience with a super conducting undulator in the storage ring at ANKA, in: EPAC 2006, Edinburg, pp. 3571–3573
[64] Operation and performance of a free electron laser oscillator down to 190 nm, Appl. Phys. Lett., Volume 80 (2002) no. 16, pp. 2851-2853
[65] Nonlinear harmonic generation in free electron lasers with helical wigglers, Phys. Rev. Lett., Volume 94 (2005), p. 074802
[66] et al. FLASH, Freie-Elektronen LASer in Hamburg, First operation of a Free-Electron Laser Generating GW power radiation at 32 nm, Eur. Phys. J. D, Volume 37 (2006), p. 297 http://vuv-fel.desy.de/
[67] et al. Nature Photonics, 92 (2004), p. 083002-341
[68] Using VUV high-order harmonics generated n gas as a seed for a single pass FEL, Nucl. Inst. Methods, Volume 528 (2004), p. 502
[69] Colloque sur les Applications des sources accordables VUV-X femtoseoncdes combinant accélérateur et lasers: “slicing” à SOLEIL et le projet ARC-EN-CIEL, 3–4 février 2004, amphithéâtre Lehmann, Orsay. Chairs: M.E. Couprie, M. Meyer, A. Rousse
[70] G. Lambert, M. Bougeard, W. Boutu, B. Carre, D. Garzella, M. Labat, M.E. Couprie, O. Chubar, T. Hara, H. Kitamura, T. Shintake, Seeding the FEL of the SCSS accelerator with harmonics of a Ti:Sa laser produced in gas, in: FEL 06, Berlin, Germany, August 2006, pp. 138–141
[71] Injection of harmonics generated in gas in a free electron laser providing intense and coherent extreme-UV light, Nature Physics, Volume 889 (2008) no. 4, pp. 296-300
[72] High-gain harmonic generation free electron laser with variable wavelength, Phys. Rev. E, Volume 71 (2005), p. 046501
[73] Possible application of X-ray optical elements for reducing the spectral bandwidth of an X ray SASE FEL, Optics Comm., Volume 140 (1997), p. 341
[74] V. Mitchev, J. Rossbach, B. Faatz, R. Treusch, Simulations studies on the self seeding option at FLASH, in: FEL 06, Berlin, Jacow, 2006, pp. 162–165
[75] et al. Non linear evolution in seeded free electron laser amplifiers and in free electron laser cascades, J. Appl. Opt., Volume 98 (2005) no. 4, p. 043110
[76] et al. Femtosecond and subfemtosecond X-ray pulses from a SASE based FEL, Phys. Rev. Lett., Volume 92 ( February 2004 ) no. 7, p. 74801
[77] Proposal for intense attosecond radiation from an X-ray FEL, Phys. Rev. Lett., Volume 92 (2004) no. 22
[78] Opt. Commun., 212 (2002), p. 377
[79] First operation of a free electron laser, Phys. Rev. Lett., Volume 38 (1977), pp. 892-894
[80] http://sbfel3.ucsb.edu/www/vl_fel.html
[81] et al. Science, 292 (2001), p. 2037
[82] et al. First observation of self-amplified spontaneous emission in a free electron laser at 109 nm wavelength, Phys. Rev. Lett., Volume 85 (2000), pp. 3825-3829
[83] T. Shintake, First lasing at SCSS, in: Proc. FEL Conf., Berlin, August 2006, Jacow
[84] M. Bellaveglia et al., Commisioning of the SPARC photo-injector, in: Proc. FEL Conf., Berlin, August 2006, Jacow
[85] J.N. Corlett et al., FERMI@ELETTRA: a seeded FEL for EUV and soft X ray, in: Proc. FEL Conf., Berlin, August 2006, Jacow; http://www.elettra.trieste.it/FERMI/
[86] S. Werin, M. Brandin, T. Hansen, S. Thorin, M. Abo-Bakr, J. Bahrdt, K. Goldammer, A. L'Huillier, J. Larsson, A. Persson, C.-G. Wahlstrom, The test facility for Harmonic generation at the Max-lab injector LINAC, in: Proc. FEL Conf., Berlin, August 2006, Jacow; http://www.maxlab.lu.se/acc-phys/projects/max4/
[87] A. Meseck, The BESSY-FEL soft X ray FEL: a seeded HGHG FEL, in: Proc. FEL Conf., Berlin, August 2006, Jacow
[88] http://filburt.lns.mit.edu/xfel/index.htm
[89] J. Clarke, Future Light source : integration of lasers, FELs and accelerators at 4GLS, in: Proc. FEL Conf., Berlin, August 2006, Jacow; http://www.4gls.ac.uk/
[90] The European X-Ray Laser Project XFEL, TDR, July 2006, http://www.xfel.desy.de
[91] Linac Coherent Light Sources- LCLS, http://www-xfel.spring8.or.jp, Conceptual Design Report, May 2005
[92] http://www-xfel.spring8.or.jp/
[93] M. Yoon, J.E. Han, E.S. Kim, Optimisation of a soft X-ray SASE-FEL parameters at the Pohang accelerator laboratory, in: Proc. FEL04, Jacow, pp. 183–186
[94] http://fel.web.psi.ch/public/xfel/ETH%20Application_8Sept_Final%20.pdf
[95] New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator, Nucl. Instrum. Methods A, Volume 7 (2004), p. 080702-319 http://accelconf.web.cern.ch/accelconf/
[96] J.P. Carneiro et al., Behaviour of the TTF2 RF gun with long pulses and high repetition rates, TESLA Report 3-333 (2000)
[97] J. Smedley, T. Rao, J. Sekutowicz, P. Kneisel, J. Langner, P. Strzyzewski, R. Lefferts, A. Lipski, Progress on Lead photocathodes for superconducting injectors, in: PAC 2005, Jacow Publications
[98] K. Togawa, T. Shintake, H. Baba, T. Inagaki, K. Onoe, T. Tanaka, in: Proc. FEL04, pp. 351–354
[99] R.J. Bakker, A. Adelmann, A.‘Anghel, M. Dehler, R. Ganter, S. Leemann, K. Li, M. Pedrozzi, J.-Y. Raguin, L. Rivkin, V. Schlott, F. Wei, A. Wrulich, Ultra high brightness accelerator design, in: FEL 06, Berlin, 2006, pp. 214–217
[100] C. Limborg-Deprey, Maximizing brightness in photo injectors, in: PAC Conf., 2005
[101] N. Forget et al., Direct Pulse shaping of ultraviolet pulses by an AOPDF, presented at CLEO/QELS 2006
[102] New photoelectric injector for the Los Alamos National Laboratory XUV FEL accelerator, Nucl. Instr. Methods A, Volume 285 (1989), p. 313
[103] M. Ferrario et al., HOMDYN study for the LCLS RF photo-injector, SLAC-PUB 9400
[104] L. Serafini, A. Bacci, M. Ferrario, Ultra short electron bunch generation with a rectilinear compressor, in: PAC 2001, Chicago, 2001
[105] et al. Superconducting TESLA cavities, Phys. Rev. ST Accel. Beam, Volume 3 (2000), p. 092001
[106] M. Dohlus, T. Limberg, Impact of optic on CSR-related emittance growth in bunch compressor chicane, in: PAC Proc., 2003
[107] A. Loulergue, A. Mosnier, A simple S-Chicane for the final bunch compressor of TTF-FEL, in: EPAC 2000
[108] Design considerations for a 1 Å SASE undulator, Nucl. Inst. Methods A, Volume 455 (2000), pp. 503-523
[109] Simple method for tracking with coherent synchrotron radiation, Phys. Rev. ST Accel. Beams, Volume 4 (2001), p. 070701
[110] R. Tatchyn, Aspects of strong-focusing undulator design for storage ring and linac-driven X-ray FEL (XRFEL) applications, SSRL/SLAC, http://www.aps.anl.gov/conferences/FLSworkshop/proceedings/WG4.html
[111] J. Kim et al., Femtosecond synchronization and stabilization techniques, in: FEL Conference, Berlin, August 2006, Jacow
[112] et al. Design considerations for laser based VIV and X-ray free electron lasers, Appl. Phys. B, Volume 86 (2007), p. 431
[113] Sustained kilowatt lasing in a free electron laser with same-cell energy recovery, Phys. Rev. Lett., Volume 84 (2000) no. 4, pp. 662-665 http://www.jlab.org/FEL/
[114] R. Hajima et al., Recent results of the JAERI, energy-recovery Linac FEL, in: Proc. of FEL 2004, pp. 301–303
[115] N.A. Vinokurov et al., Status of the Novosibirsk Terahertz FEL, in: Proc. of FEL 2004, pp. 226–228
[116] G.H. Hoffstaetter, ERL upgade of an existing X- XRay facility: CHESS at CESR, in: EPAC 2004, pp. 497–499
[117] I. Ben-Zvi, M. Babzien, E. Blum, W. Casey, X. Chang, W. Graves, J. Hastings, S. Hulbert, E. Johnson, C. Kao, S. Kramer, S Krinsky, P. Mortazavi, J. Murphy, S. Ozaki, S. Pjerov, B. Podobedov, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, D. Siddons, J. Smedley, T. Srinivasan-rao, N. Towne, J. Wang, X. Wang, J. Wu, V. Yakimenko, L.H. Yu, Photoinjected energy recovery linac upgrade for the national synchrotron light source, PAC01
[118] J.N. Corlett, W. Barry, J.M. Byrd, S. DeSantis, P. Heimann, S. Lidia, D. Li, R. Rimmer, K. Robinson, R. Schoenlein, J. Tanabe, S. Wang, W. Wan, R. Wells, and A. Zholents, A recirculating linac based synchrotron light source for ultrafast X-Ray science, in: Proc. of EPAC 2002, Paris, France
[119] Science, 274 (1996), p. 236
[120] et al. Science, 287 (2000)
[121] http://www.4gls.ac.uk/home.htm
[122] S. Smith, A review of ERL prototype experience and light source design challenges, in: EPAC 06, Edimburg, pp. 39–43
[123] J. Synchrotron Rad., 5 (1998), p. 176
[124] S. Sakanaka (KEK), R. Hajima (JAEA), Status of ERL projects at KEK and JAEA, Future Light Sources Workshop, DESY, 2006
[125] Phys. Rev. ST Acc. Beam, 7 (2004), p. 054401
[126] RF stability in energy recovering free electron lasers, Nucl. Instr. Methods A, Volume 483 (2002), pp. 107-112
Cited by Sources:
Comments - Policy