[Micro-optique pour rayons X de haute énergie]
Pendant la dernière décennie, des progrès énormes ont été accomplis dans le domaine de l'optique des rayons X. Ces progrès découlent des propriétés uniques des faisceaux X produits par les sources synchrotron de troisième génération, dont la faible émittance, couplée à une brillance élevée, permet le développement de dispositifs de focalisation efficaces pour de nouvelles techniques de microscopie X. Cet article donne un aperçu de l'état de l'art des optiques microfocalisantes et des méthodes pour les rayons X durs. L'accent est mis sur les méthodes visant à produire une résolution submicrométrique, voire nanométrique. Ces méthodes se rangent dans trois grandes catégories : réflexion, réfraction et diffraction.
Nous présentons les principes de base et des résultats récents pour chaque dispositif optique.
A tremendous progress in X-ray optics development was made in the past decade. Progress has been driven by the unique properties of X-ray beams produced by third generation synchrotron sources. The very low emittance coupled with high brilliance allows one to develop efficient focusing devices for new X-ray microscopy techniques. This article provides an overview of the state-of-the-art in micro-focusing optics and methods for hard X-rays. The main emphasis is put on those methods which aim to produce submicron and nanometer resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics.
The basic principles and recent achievements are discussed for all optical devices.
Mots-clés : Micro-optique pour rayons X, Miroirs Kirkpatrick–Baez, Réseau zoné de Fresnel, Guide d'ondes, Tube capillaire, Objectif réfractif
Anatoly Snigirev 1 ; Irina Snigireva 1
@article{CRPHYS_2008__9_5-6_507_0, author = {Anatoly Snigirev and Irina Snigireva}, title = {High energy {X-ray} micro-optics}, journal = {Comptes Rendus. Physique}, pages = {507--516}, publisher = {Elsevier}, volume = {9}, number = {5-6}, year = {2008}, doi = {10.1016/j.crhy.2008.02.003}, language = {en}, }
Anatoly Snigirev; Irina Snigireva. High energy X-ray micro-optics. Comptes Rendus. Physique, Synchrotron x-rays and condensed matter, Volume 9 (2008) no. 5-6, pp. 507-516. doi : 10.1016/j.crhy.2008.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.02.003/
[1] Appl. Phys. Lett., 90 (2007), p. 051903
[2] AIP Conf. Proc., 879 (2007), pp. 792-799
[3] Science, 263 (1994), pp. 201-203
[4] J. Synchrotron Rad., 14 (2007), pp. 326-330
[5] Phys. Rev. Lett., 94 (2005), p. 074801
[6] Phys. Rev. Lett., 96 (2006), p. 127401
[7] Appl. Phys. Lett., 87 (2005), p. 124103
[8] J. Opt. Soc. Am., 38 (1948), pp. 766-774
[9] Rev. Sci. Instrum., 76 (2005), p. 063709
[10] J. Synchrotron Rad., 9 (2002), pp. 313-316
[11] Rev. Sci. Instrum., 77 (2006), p. 063712
[12] Rev. Sci. Instrum., 71 (2000), pp. 2635-2639
[13] Rev. Sci. Instrum., 76 (2005), p. 113701
[14] Rec. Trav. Bot. Neerlandais, 41 (1948), p. 603
[15] Appl. Opt., 27 (1988), p. 5135
[16] J. Synchrotron Rad., 2 (1995), pp. 296-299
[17] J. Synchrotron Rad., 13 (2006), pp. 74-84
[18] Part. Part. Syst. Charact., 22 (2005), pp. 384-390
[19] A. Knochel, G. Gaul, F. Lechtenberg, German patent DE 44441092C2, 1994
[20] Phys. Rev. Lett., 71 (1993), pp. 537-540
[21] Nature, 403 (2000), pp. 638-641
[22] Science, 297 (2002), pp. 230-234
[23] J. Opt. Soc. Am., 51 (1961), pp. 405-412
[24] Jpn. J. Appl. Phys., 40 (2001), p. L1190-L1192
[25] Jpn. J. Appl. Phys., 40 (2001), pp. 1508-1510
[26] J. Phys. IY (France), 104 (2003), pp. 49-52
[27] J. Phys. IY (France), 104 (2003), pp. 35-40
[28] J. Synchrotron Rad., 8 (2001), pp. 1054-1055
[29] Appl. Phys. Lett., 86 (2005), p. 163104
[30] Appl. Phys. Lett., 61 (1992), pp. 1877-1879
[31] J. Synchrotron Rad., 5 (1998), pp. 1390-1395
[32] J. Phys. IY (France), 104 (2003), pp. 17-20
[33] AIP Conf. Proc., 879 (2006), pp. 998-1001
[34] Proc. SPIE, 316 (1982), pp. 103-105
[35] Rev. Sci. Instrum., 74 (2003), pp. 5101-5104
[36] Rev. Sci. Instrum., 70 (1999), pp. 3537-3541
[37] Nature, 401 (1999), pp. 895-898
[38] Appl. Phys. Lett., 86 (2005), p. 151109
[39] Nature, 384 (1996), pp. 49-51
[40] Appl. Opt., 37 (1998), pp. 653-662
[41] Nucl. Instrum. Methods A, 412 (1998), pp. 483-506
[42] Appl. Phys. Lett., 77 (2000), pp. 31-33
[43] Appl. Phys. Lett., 74 (1999), pp. 3924-3926
[44] J. Synchrotron Rad., 6 (1999), pp. 1153-1167
[45] Nucl. Instrum. Methods A, 467–468 (2001), pp. 966-969
[46] Appl. Phys. Lett., 81 (2002), pp. 1527-1529
[47] Phys. Rev. Lett., 92 (2004), p. 205701
[48] Appl. Phys. Lett., 81 (2002), pp. 1399-1401
[49] J. Synchrotron Rad., 14 (2007), pp. 204-211
[50] M. Rossat, G. Vaughan, J. Wright, I. Snigireva, A. Snigirev, A. Bytchkov, C. Curfs, in press
[51] Appl. Phys. Lett., 77 (2000), pp. 4058-4060
[52] Nucl. Instrum. Methods A, 467–468 (2001), pp. 982-985
[53] Appl. Phys. Lett., 81 (2002), pp. 2279-2281
[54] AIP Conf. Proc., 705 (2004), pp. 708-712
[55] Proc. SPIE, 6705 (2007), p. 670506-01
[56] Proc. SPIE, 5539 (2004), pp. 244-250
[57] Phys. Rev. Lett., 91 (2003), p. 204801
[58] Phys. Rev. Lett., 94 (2005), p. 054802
[59] Phys. Rev. B, 74 (2006), p. 033405
[60] Phys. Rev. B, 73 (2006), p. 245331
- Cold Cathode Flat Panel X-ray Source for Talbot–Lau Grating Interferometer using Zinc Oxide Nanowire Field Emitter Arrays and Periodic Microstructured Anode, ACS Applied Nano Materials, Volume 7 (2024) no. 22, p. 25439 | DOI:10.1021/acsanm.4c04410
- High-Resolution X-Ray Micro-Optics: Technologies and Materials, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Volume 18 (2024) no. 6, p. 1508 | DOI:10.1134/s1027451024701489
- Testing of X-ray Optics for Synchrotron Studies using a Laboratory Microfocus X-ray Source, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Volume 18 (2024) no. S1, p. S24 | DOI:10.1134/s1027451024701829
- Partially coherent light propagation through a kinoform lens, Journal of Synchrotron Radiation, Volume 30 (2023) no. 3, p. 519 | DOI:10.1107/s1600577523000875
- Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems, Physics Reports, Volume 974 (2022), p. 1 | DOI:10.1016/j.physrep.2022.05.001
- Deformation field mapping of the X-ray silicon Fresnel Zone Plate, Procedia Structural Integrity, Volume 40 (2022), p. 40 | DOI:10.1016/j.prostr.2022.04.005
- , Advances in X-Ray/EUV Optics and Components XVI (2021), p. 10 | DOI:10.1117/12.2594675
- Fully vacuum-sealed addressable nanowire cold cathode flat-panel x-ray source, Applied Physics Letters, Volume 119 (2021) no. 5 | DOI:10.1063/5.0061332
- , EUV and X-ray Optics, Sources, and Instrumentation (2021), p. 14 | DOI:10.1117/12.2589310
- Applied Imaging Methods, X-Ray CT (2021), p. 267 | DOI:10.1007/978-981-16-0590-1_5
- Impact of beryllium microstructure on the imaging and optical properties of X-ray refractive lenses, Journal of Synchrotron Radiation, Volume 27 (2020) no. 1, p. 44 | DOI:10.1107/s1600577519015625
- Measurement and compensation of misalignment in double-sided hard X-ray Fresnel zone plates, Journal of Synchrotron Radiation, Volume 27 (2020) no. 3, p. 583 | DOI:10.1107/s1600577520001757
- , SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Volume 2299 (2020), p. 060004 | DOI:10.1063/5.0031372
- , SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Volume 2299 (2020), p. 060006 | DOI:10.1063/5.0031371
- Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 1719 | DOI:10.1007/978-3-030-23201-6_46
- Optical performance and radiation stability of polymer X-ray refractive nano-lenses, Journal of Synchrotron Radiation, Volume 26 (2019) no. 3, p. 714 | DOI:10.1107/s1600577519001656
- CRL-based ultra-compact transfocator for X-ray focusing and microscopy, Journal of Synchrotron Radiation, Volume 26 (2019) no. 4, p. 1208 | DOI:10.1107/s1600577519005708
- X-ray reflecto-interferometer based on compound refractive lenses, Journal of Synchrotron Radiation, Volume 26 (2019) no. 5, p. 1572 | DOI:10.1107/s1600577519007896
- High beam-current density of a 10-keV nano-focus X-ray source, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 940 (2019), p. 475 | DOI:10.1016/j.nima.2019.06.049
- On the Possibility of Two-Dimensional Focusing of Reflected X-Rays from Quartz Single Crystal in the Presence of External Temperature Gradient, Journal of Contemporary Physics (Armenian Academy of Sciences), Volume 53 (2018) no. 3, p. 263 | DOI:10.3103/s106833721803012x
- Mini-Transfocator for X-ray Focusing and Microscopy, Microscopy and Microanalysis, Volume 24 (2018) no. S2, p. 294 | DOI:10.1017/s143192761801379x
- Materials characterization by synchrotron x-ray microprobes and nanoprobes, Reviews of Modern Physics, Volume 90 (2018) no. 2 | DOI:10.1103/revmodphys.90.025007
- Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction, ACS Nano, Volume 11 (2017) no. 9, p. 8542 | DOI:10.1021/acsnano.7b03447
- Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility, Chinese Physics B, Volume 26 (2017) no. 7, p. 076101 | DOI:10.1088/1674-1056/26/7/076101
- X-ray tomography as a diagnostic method of X-ray refractive optics, Instruments and Experimental Techniques, Volume 60 (2017) no. 3, p. 390 | DOI:10.1134/s0020441217030125
- Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source, Journal of Environmental Quality, Volume 46 (2017) no. 6, p. 1158 | DOI:10.2134/jeq2016.10.0401
- X-ray refractive parabolic axicon lens, Optics Express, Volume 25 (2017) no. 23, p. 28469 | DOI:10.1364/oe.25.028469
- Synchrotron X-Ray Fluorescence ☆, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2017) | DOI:10.1016/b978-0-12-409547-2.14224-6
- Finite size effect on the structural and magnetic properties of MnAs/GaAs(001) patterned microstructures thin films, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-17251-y
- , Volume 1764 (2016), p. 020003 | DOI:10.1063/1.4961131
- High pressure XANES and XMCD in the tender X-ray energy range, High Pressure Research, Volume 36 (2016) no. 3, p. 445 | DOI:10.1080/08957959.2016.1206092
- 30-Lens interferometer for high-energy X-rays, Journal of Synchrotron Radiation, Volume 23 (2016) no. 5, p. 1104 | DOI:10.1107/s160057751601153x
- High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep21434
- Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2016), p. 1505 | DOI:10.1007/978-3-319-14394-1_46
- Focusing performance of hard X-ray single Kinoform lens, Acta Physica Sinica, Volume 64 (2015) no. 16, p. 164104 | DOI:10.7498/aps.64.164104
- X-Ray Imaging, Chemical Imaging Analysis, Volume 69 (2015), p. 213 | DOI:10.1016/b978-0-444-63439-9.00006-2
- Optimizing shape uniformity and increasing structure heights of deep reactive ion etched silicon x-ray lenses, Journal of Micromechanics and Microengineering, Volume 25 (2015) no. 12, p. 125013 | DOI:10.1088/0960-1317/25/12/125013
- Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2015), p. 1 | DOI:10.1007/978-3-319-04507-8_46-1
- A simple approach for an ultra-precise patterning using deep x-ray lithography with a micron-patterned x-ray mask, International Journal of Precision Engineering and Manufacturing, Volume 15 (2014) no. 11, p. 2385 | DOI:10.1007/s12541-014-0604-6
- Full-field X-ray diffraction microscopy using polymeric compound refractive lenses, Journal of Applied Crystallography, Volume 47 (2014) no. 6, p. 1882 | DOI:10.1107/s1600576714021256
- Small‐Angle Scattering, Structure from Diffraction Methods (2014), p. 259 | DOI:10.1002/9781118695708.ch5
- Synchrotron x-Ray Spectroscopic Analysis, Treatise on Geochemistry (2014), p. 213 | DOI:10.1016/b978-0-08-095975-7.01415-7
- Nanostructures Observed by Surface Sensitive X-Ray Scattering and Highly Focused Beams, Characterization of Semiconductor Heterostructures and Nanostructures (2013), p. 113 | DOI:10.1016/b978-0-444-59551-5.00004-2
- Micro- and Nano-X-ray Beams, Characterization of Semiconductor Heterostructures and Nanostructures (2013), p. 361 | DOI:10.1016/b978-0-444-59551-5.00009-1
- Optical design of the NSLS-II metrology beamline, Journal of Physics: Conference Series, Volume 425 (2013) no. 16, p. 162009 | DOI:10.1088/1742-6596/425/16/162009
- References, Nanobeam X‐Ray Scattering (2013), p. 245 | DOI:10.1002/9783527655069.refs
- Novel approaches in the SR beamline design, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 710 (2013), p. 161 | DOI:10.1016/j.nima.2012.11.090
- Application of Microfocus X-Ray Beams from Synchrotrons in Heritage Conservation, International Journal of Architectural Heritage, Volume 6 (2012) no. 2, p. 228 | DOI:10.1080/15583058.2010.528825
- Micro-X-ray absorption spectroscopy with compound refractive lenses, Journal of Analytical Atomic Spectrometry, Volume 27 (2012) no. 10, p. 1803 | DOI:10.1039/c2ja30130j
- Impurities in multicrystalline silicon wafers for solar cells detected by synchrotron micro-beam X-ray fluorescence analysis, Journal of Analytical Atomic Spectrometry, Volume 27 (2012) no. 11, p. 1875 | DOI:10.1039/c2ja30188a
- Focusing systems for the generation of X-ray micro beam: An overview, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 77 (2012), p. 1 | DOI:10.1016/j.sab.2012.07.021
- Resonant elastic X-ray scattering: Where from? where to?, The European Physical Journal Special Topics, Volume 208 (2012) no. 1, p. 3 | DOI:10.1140/epjst/e2012-01602-7
- Direct speciation analysis of inorganic elements in single cells using X-ray absorption spectroscopy, J. Anal. At. Spectrom., Volume 26 (2011) no. 1, p. 23 | DOI:10.1039/c0ja00153h
- X-ray transfocators: focusing devices based on compound refractive lenses, Journal of Synchrotron Radiation, Volume 18 (2011) no. 2, p. 125 | DOI:10.1107/s0909049510044365
- Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate, Applied Physics Express, Volume 3 (2010) no. 7, p. 076702 | DOI:10.1143/apex.3.076702
- Exploring soft matter with x-rays: from the discovery of the DNA structure to the challenges of free electron lasers, Journal of Physics: Condensed Matter, Volume 22 (2010) no. 32, p. 323102 | DOI:10.1088/0953-8984/22/32/323102
- The role of single element errors in planar parabolic compound refractive lenses, Journal of Synchrotron Radiation, Volume 17 (2010) no. 5, p. 616 | DOI:10.1107/s0909049510022454
- Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging, New Journal of Physics, Volume 12 (2010) no. 3, p. 035013 | DOI:10.1088/1367-2630/12/3/035013
- Diffractive focusing of hard x rays generated by femtosecond laser-driven plasma, Optical Engineering, Volume 49 (2010) no. 4, p. 046501 | DOI:10.1117/1.3381181
- Practical Application of Synchrotron-Based Hard X-Ray Microprobes in Soil Sciences, Synchrotron-Based Techniques in Soils and Sediments, Volume 34 (2010), p. 27 | DOI:10.1016/s0166-2481(10)34002-5
- X‐Ray Diffraction as a Local Probe Tool, ChemPhysChem, Volume 10 (2009) no. 17, p. 2923 | DOI:10.1002/cphc.200900563
- In Situ Imaging of Metals in Cells and Tissues, Chemical Reviews, Volume 109 (2009) no. 10, p. 4780 | DOI:10.1021/cr900223a
- High brilliance small-angle X-ray scattering applied to soft matter, Current Opinion in Colloid Interface Science, Volume 14 (2009) no. 6, p. 409 | DOI:10.1016/j.cocis.2009.05.005
- New imaging technique based on diffraction of a focused x-ray beam, Journal of Physics D: Applied Physics, Volume 42 (2009) no. 1, p. 012005 | DOI:10.1088/0022-3727/42/1/012005
- Metals in Cells: X ‐Ray Fluorescence Microscopy, Encyclopedia of Inorganic and Bioinorganic Chemistry (2004), p. 1 | DOI:10.1002/9781119951438.eibc2110
Cité par 65 documents. Sources : Crossref
Commentaires - Politique