Comptes Rendus
High energy X-ray micro-optics
[Micro-optique pour rayons X de haute énergie]
Comptes Rendus. Physique, Synchrotron x-rays and condensed matter, Volume 9 (2008) no. 5-6, pp. 507-516.

Pendant la dernière décennie, des progrès énormes ont été accomplis dans le domaine de l'optique des rayons X. Ces progrès découlent des propriétés uniques des faisceaux X produits par les sources synchrotron de troisième génération, dont la faible émittance, couplée à une brillance élevée, permet le développement de dispositifs de focalisation efficaces pour de nouvelles techniques de microscopie X. Cet article donne un aperçu de l'état de l'art des optiques microfocalisantes et des méthodes pour les rayons X durs. L'accent est mis sur les méthodes visant à produire une résolution submicrométrique, voire nanométrique. Ces méthodes se rangent dans trois grandes catégories : réflexion, réfraction et diffraction.

Nous présentons les principes de base et des résultats récents pour chaque dispositif optique.

A tremendous progress in X-ray optics development was made in the past decade. Progress has been driven by the unique properties of X-ray beams produced by third generation synchrotron sources. The very low emittance coupled with high brilliance allows one to develop efficient focusing devices for new X-ray microscopy techniques. This article provides an overview of the state-of-the-art in micro-focusing optics and methods for hard X-rays. The main emphasis is put on those methods which aim to produce submicron and nanometer resolution. These methods fall into three broad categories: reflective, refractive and diffractive optics.

The basic principles and recent achievements are discussed for all optical devices.

Publié le :
DOI : 10.1016/j.crhy.2008.02.003
Keywords: X-ray micro-optics, Kirkpatrick–Baez mirrors, Fresnel zone plates, Waveguides, Capillaries, Refractive lenses
Mots-clés : Micro-optique pour rayons X, Miroirs Kirkpatrick–Baez, Réseau zoné de Fresnel, Guide d'ondes, Tube capillaire, Objectif réfractif

Anatoly Snigirev 1 ; Irina Snigireva 1

1 European Synchrotron Radiation Facility ESRF, 38043 Grenoble, France
@article{CRPHYS_2008__9_5-6_507_0,
     author = {Anatoly Snigirev and Irina Snigireva},
     title = {High energy {X-ray} micro-optics},
     journal = {Comptes Rendus. Physique},
     pages = {507--516},
     publisher = {Elsevier},
     volume = {9},
     number = {5-6},
     year = {2008},
     doi = {10.1016/j.crhy.2008.02.003},
     language = {en},
}
TY  - JOUR
AU  - Anatoly Snigirev
AU  - Irina Snigireva
TI  - High energy X-ray micro-optics
JO  - Comptes Rendus. Physique
PY  - 2008
SP  - 507
EP  - 516
VL  - 9
IS  - 5-6
PB  - Elsevier
DO  - 10.1016/j.crhy.2008.02.003
LA  - en
ID  - CRPHYS_2008__9_5-6_507_0
ER  - 
%0 Journal Article
%A Anatoly Snigirev
%A Irina Snigireva
%T High energy X-ray micro-optics
%J Comptes Rendus. Physique
%D 2008
%P 507-516
%V 9
%N 5-6
%I Elsevier
%R 10.1016/j.crhy.2008.02.003
%G en
%F CRPHYS_2008__9_5-6_507_0
Anatoly Snigirev; Irina Snigireva. High energy X-ray micro-optics. Comptes Rendus. Physique, Synchrotron x-rays and condensed matter, Volume 9 (2008) no. 5-6, pp. 507-516. doi : 10.1016/j.crhy.2008.02.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.02.003/

[1] H. Mimura; H. Yumoto; S. Matsuyama; Y. Sano; K. Yamamura; Y. Mori; M. Yabashi; Y. Nishino; K. Tamasaku; T. Ishikawa; K. Yamauchi Appl. Phys. Lett., 90 (2007), p. 051903

[2] O. Hignette; P. Cloetens; C. Morawe; C. Borel; W. Ludwig; P. Bernard; A. Rommeveaux; S. Bohic AIP Conf. Proc., 879 (2007), pp. 792-799

[3] D.H. Bilderback; S.A. Hoffman; D.J. Thiel Science, 263 (1994), pp. 201-203

[4] A. Snigirev; A. Bjeoumikhov; A. Erko; I. Snigireva; M. Grigoriev; V. Yunkin; M. Erko; S. Bjeoumikhova J. Synchrotron Rad., 14 (2007), pp. 326-330

[5] A. Jarre; C. Fuhse; C. Ollinger; J. Seeger; R. Tucoulou; T. Salditt Phys. Rev. Lett., 94 (2005), p. 074801

[6] H.C. Kang; J. Maser; G.B. Stephenson; C. Liu; R. Conley; A.T. Macrander; S. Vogt Phys. Rev. Lett., 96 (2006), p. 127401

[7] C.G. Schroer; O. Kurapova; J. Patommel; P. Boye; J. Feldkamp; B. Lengeler; M. Burghammer; C. Riekel; L. Vincze; A. van der Hart; M. Kuchler Appl. Phys. Lett., 87 (2005), p. 124103

[8] P. Kirkpatrick; A.V. Baez J. Opt. Soc. Am., 38 (1948), pp. 766-774

[9] O. Hignette; P. Cloetens; G. Rostaing; P. Bernard; C. Morawe Rev. Sci. Instrum., 76 (2005), p. 063709

[10] K. Yamauchi; K. Yamamura; H. Mimura; Y. Sano; A. Saito; A. Souvorov; M. Yabashi; K. Tamasaku; T. Ishikawa; Y. Mori J. Synchrotron Rad., 9 (2002), pp. 313-316

[11] H. Yumoto; H. Mimura; S. Matsuyama; S. Handa; Y. Sano; M. Yabashi; Y. Nishino; K. Tamasaku; T. Ishikawa; K. Yamauchi Rev. Sci. Instrum., 77 (2006), p. 063712

[12] G.E. Ice; J.S. Chung; J. Tischler; A. Lunt; L. Assoufid Rev. Sci. Instrum., 71 (2000), pp. 2635-2639

[13] W. Liu; G.E. Ice; Z. Tischler; A. Khonsary; C. Liu; L. Assoufid; A.T. Macrander Rev. Sci. Instrum., 76 (2005), p. 113701

[14] D.R. Kreger Rec. Trav. Bot. Neerlandais, 41 (1948), p. 603

[15] E.A. Stern; Z. Kalman; A. Lewis; K. Lieberman Appl. Opt., 27 (1988), p. 5135

[16] D.X. Balaic; K.A. Nugent; Z. Barnea; R. Garret; S.W. Wilkins J. Synchrotron Rad., 2 (1995), pp. 296-299

[17] R. Huang; D. Bilderback J. Synchrotron Rad., 13 (2006), pp. 74-84

[18] A. Bjeoumikhov; S. Bjeoumikhova; R. Wedell Part. Part. Syst. Charact., 22 (2005), pp. 384-390

[19] A. Knochel, G. Gaul, F. Lechtenberg, German patent DE 44441092C2, 1994

[20] Y.P. Feng; S.K. Sinha; H.W. Deckman; J.B. Hastings; D.P. Siddons Phys. Rev. Lett., 71 (1993), pp. 537-540

[21] S. Di Fonzo; W. Jark; S. Lagomarsin; C. Giannini; L. De Caro; A. Cedola; M. Muller Nature, 403 (2000), pp. 638-641

[22] F. Pfeiffer; C. David; M. Burghammer; C. Riekel; T. Salditt Science, 297 (2002), pp. 230-234

[23] A.V. Baez J. Opt. Soc. Am., 51 (1961), pp. 405-412

[24] Y. Kagoshima; T. Ibuki; Y. Yokoyama; Y. Tsusaka; J. Matsui; K. Takai; M. Aino Jpn. J. Appl. Phys., 40 (2001), p. L1190-L1192

[25] Y. Suzuki; A. Takeuchi; H. Takano; T. Ohigashi; H. Takenaka Jpn. J. Appl. Phys., 40 (2001), pp. 1508-1510

[26] Y. Kagoshima; Y. Yokoyama; T. Niimi; T. Koyama; Y. Tsusaka; J. Matsui; K. Takai J. Phys. IY (France), 104 (2003), pp. 49-52

[27] Y. Suzuki; M. Awaji; A. Takeuchi; H. Takano; K. Uesugi; Y. Komura; N. Kamijo; M. Yasumoto; S. Tamura J. Phys. IY (France), 104 (2003), pp. 35-40

[28] C. David; E. Ziegler; B. Nohammer J. Synchrotron Rad., 8 (2001), pp. 1054-1055

[29] B. Nohammer; C. David; M. Burghammer; C. Riekel Appl. Phys. Lett., 86 (2005), p. 163104

[30] B. Lai; W. Yun; D. Legnini; Y. Xiao; J. Chrzas; P.J. Viccaro; V. White; S. Bajikar; D. Denton; F. Cerrina; E.Di. Fabrizio; M. Gentilli; L. Grella; M. Baciocchi Appl. Phys. Lett., 61 (1992), pp. 1877-1879

[31] W. Yun; S.T. Pratt; R.M. Miller; Z. Cai; D.B. Hunter; A.G. Jarstfer; K.M. Kemner; B. Lai; H.R. Lee; D.G. Legnini; W. Rodrigues; C.I. Smith J. Synchrotron Rad., 5 (1998), pp. 1390-1395

[32] Z. Cai; B. Lai; Y. Xiao; S. Xu J. Phys. IY (France), 104 (2003), pp. 17-20

[33] I. Snigireva; A. Snigirev; G. Vaughan; M. Di Michiel; V. Kohn; V. Yunkin; M. Grigoriev AIP Conf. Proc., 879 (2006), pp. 998-1001

[34] D. Rudolph; G. Schmahl; B. Niemann Proc. SPIE, 316 (1982), pp. 103-105

[35] N. Kamijo; Y. Suzuki; H. Takamo; M. Yasumoto; A. Takeuchi; M. Awaji Rev. Sci. Instrum., 74 (2003), pp. 5101-5104

[36] W. Yun; B. Lai; A.A. Krasnoperova; E. Di Fabrizio; Z. Cai; F. Cerina; Z. Chen; M. Gentili; E. Gluskin Rev. Sci. Instrum., 70 (1999), pp. 3537-3541

[37] E. Di Fabrizio; F. Romanato; M. Gentili; S. Cabrini; B. Kaulich; J. Susini; R. Barrett Nature, 401 (1999), pp. 895-898

[38] H.C. Kang; G.B. Stephenson; C. Liu; R. Conley; A.T. Macrander; J. Maser; S. Bajt; H.N. Chapman Appl. Phys. Lett., 86 (2005), p. 151109

[39] A. Snigirev; V. Kohn; I. Snigireva; B. Lengeler Nature, 384 (1996), pp. 49-51

[40] A. Snigirev; V. Kohn; I. Snigireva; A. Souvorov; B. Lengeler Appl. Opt., 37 (1998), pp. 653-662

[41] P. Elleaume Nucl. Instrum. Methods A, 412 (1998), pp. 483-506

[42] A. Chumakov; R. Ruffer; O. Leupold; A. Barla; H. Thiess; T. Asthalter; P. Doyle; A. Snigirev; A. Baron Appl. Phys. Lett., 77 (2000), pp. 31-33

[43] B. Lengeler; C.G. Schroer; M. Richwin; J. Tummler; M. Drakopoulos; A. Snigirev; I. Snigireva Appl. Phys. Lett., 74 (1999), pp. 3924-3926

[44] B. Lengeler; C. Schroer; J. Tummler; B. Benner; M. Richwin; A. Snigirev; I. Snigireva; M. Drakopoulos J. Synchrotron Rad., 6 (1999), pp. 1153-1167

[45] C. Schroer; F. Gunsler; B. Benner; M. Kuhlmann; J. Tummler; B. Lengeler; C. Rau; T. Weitkamp; A. Snigirev; I. Snigireva Nucl. Instrum. Methods A, 467–468 (2001), pp. 966-969

[46] C.G. Schroer; J. Meyer; M. Kuhlmann; B. Benner; T.F. Gunsler; B. Lengeler; C. Rau; T. Weitkamp; A. Snigirev; I. Snigireva Appl. Phys. Lett., 81 (2002), pp. 1527-1529

[47] S. Engemann; H. Reichert; H. Dosch; J. Bilgram; V. Honimaki; A. Snigirev Phys. Rev. Lett., 92 (2004), p. 205701

[48] B. Cederstrom; M. Lundqvist; C. Ribbing Appl. Phys. Lett., 81 (2002), pp. 1399-1401

[49] S.D. Shastri; J. Almer; C. Ribbing; B. Cederstrom J. Synchrotron Rad., 14 (2007), pp. 204-211

[50] M. Rossat, G. Vaughan, J. Wright, I. Snigireva, A. Snigirev, A. Bytchkov, C. Curfs, in press

[51] V. Aristov; M. Grigoriev; S. Kuznetsov; L. Shabelnikov; V. Yunkin; T. Weitkamp; C. Rau; I. Snigireva; A. Snigirev; M. Hoffmann; E. Voges Appl. Phys. Lett., 77 (2000), pp. 4058-4060

[52] I. Snigireva; A. Snigirev; C. Rau; T. Weitkamp; V. Aristov; M. Grigoriev; S. Kuznetsov; L. Shabelnikov; V. Yunkin; M. Hoffmann; E. Voges Nucl. Instrum. Methods A, 467–468 (2001), pp. 982-985

[53] M. Drakopoulos; J. Zegenhagen; A. Snigirev; I. Snigireva; M. Hauser; K. Eberl; V. Aristov; L. Shabelnikov; V. Yunkin Appl. Phys. Lett., 81 (2002), pp. 2279-2281

[54] I. Snigireva; A. Snigirev; V. Yunkin; M. Drakopoulos; M. Grigoriev; S. Kuznetsov; M. Chukalina; M. Hoffmann; D. Nuesse; E. Voges AIP Conf. Proc., 705 (2004), pp. 708-712

[55] A. Snigirev; I. Snigireva; M. Grigoriev; V. Yunkin; M. Di Michiel; S. Kuznetsov; G. Vaughan Proc. SPIE, 6705 (2007), p. 670506-01

[56] A. Snigirev; I. Snigireva; M. Di Michiel; V. Honkimaki; M. Grigoriev; V. Nazmov; E. Reznikova; J. Mohr; V. Saile Proc. SPIE, 5539 (2004), pp. 244-250

[57] C. Bergemann; H. Keymeulen; J.F. Van der Veen Phys. Rev. Lett., 91 (2003), p. 204801

[58] C. Schroer; B. Lengeler Phys. Rev. Lett., 94 (2005), p. 054802

[59] C.G. Schroer Phys. Rev. B, 74 (2006), p. 033405

[60] F. Pfeiffer; C. David; J.F. van der Veen; C. Bergemann Phys. Rev. B, 73 (2006), p. 245331

  • Song Kang; Guicai Qi; Wangjiang Wu; Chengyun Wang; Yuan Xu; Linghong Zhou; Shaozhi Deng; Ningsheng Xu; Jun Chen Cold Cathode Flat Panel X-ray Source for Talbot–Lau Grating Interferometer using Zinc Oxide Nanowire Field Emitter Arrays and Periodic Microstructured Anode, ACS Applied Nano Materials, Volume 7 (2024) no. 22, p. 25439 | DOI:10.1021/acsanm.4c04410
  • I. I. Lyatun; P. N. Medvedskaya; A. S. Korotkov; S. A. Shevyrtalov; S. S. Lyatun; A. A. Snigirev High-Resolution X-Ray Micro-Optics: Technologies and Materials, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Volume 18 (2024) no. 6, p. 1508 | DOI:10.1134/s1027451024701489
  • A. A. Barannikov; D. A. Zverev; I. I. Lyatun; I. B. Panormov; K. V. Rudenko; A. A. Snigirev Testing of X-ray Optics for Synchrotron Studies using a Laboratory Microfocus X-ray Source, Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, Volume 18 (2024) no. S1, p. S24 | DOI:10.1134/s1027451024701829
  • Weihong Sun; Yong Wang; Xiangyu Meng; Junchao Ren; Jiefeng Cao; Junqin Li; Renzhong Tai Partially coherent light propagation through a kinoform lens, Journal of Synchrotron Radiation, Volume 30 (2023) no. 3, p. 519 | DOI:10.1107/s1600577523000875
  • D. Cocco; G. Cutler; M. Sanchez del Rio; L. Rebuffi; X. Shi; K. Yamauchi Wavefront preserving X-ray optics for Synchrotron and Free Electron Laser photon beam transport systems, Physics Reports, Volume 974 (2022), p. 1 | DOI:10.1016/j.physrep.2022.05.001
  • A. Barannikov; D. Zverev; M. Sorokovikov; M. Korobenkov; V. Yunkin; Y. Dudchik; I. Snigireva; A. Snigirev Deformation field mapping of the X-ray silicon Fresnel Zone Plate, Procedia Structural Integrity, Volume 40 (2022), p. 40 | DOI:10.1016/j.prostr.2022.04.005
  • Irina Snigireva; Tetsuo Irifune; T. Shinmei; P. Medvedskaya; S. Shevyrtalov; G. Bourenkov; M. Polikarpov; S. Rashchenko; Anatoly A. Snigirev; Ivan Lyatun; Christian Morawe; Ali M. Khounsary; Shunji Goto, Advances in X-Ray/EUV Optics and Components XVI (2021), p. 10 | DOI:10.1117/12.2594675
  • Xiuqing Cao; Guofu Zhang; Yangyang Zhao; Yuan Xu; Juncong She; Shaozhi Deng; Ningsheng Xu; Jun Chen Fully vacuum-sealed addressable nanowire cold cathode flat-panel x-ray source, Applied Physics Letters, Volume 119 (2021) no. 5 | DOI:10.1063/5.0061332
  • Polina Medvedskaya; Ivan Lyatun; K. Golubenko; Vyacheslav Yunkin; Irina Snigireva; Anatoly A. Snigirev; René Hudec; Ladislav Pina; Luc Patthey; Kai Tiedtke; Libor Juha; Thomas Tschentscher; Marco Zangrando; Saša Bajt; Stéphane Guizard, EUV and X-ray Optics, Sources, and Instrumentation (2021), p. 14 | DOI:10.1117/12.2589310
  • Hiroyuki Toda Applied Imaging Methods, X-Ray CT (2021), p. 267 | DOI:10.1007/978-981-16-0590-1_5
  • Ivan Lyatun; Peter Ershov; Irina Snigireva; Anatoly Snigirev Impact of beryllium microstructure on the imaging and optical properties of X-ray refractive lenses, Journal of Synchrotron Radiation, Volume 27 (2020) no. 1, p. 44 | DOI:10.1107/s1600577519015625
  • Viktoria Yurgens; Frieder Koch; Mario Scheel; Timm Weitkamp; Christian David Measurement and compensation of misalignment in double-sided hard X-ray Fresnel zone plates, Journal of Synchrotron Radiation, Volume 27 (2020) no. 3, p. 583 | DOI:10.1107/s1600577520001757
  • D. Zverev; I. Snigireva; S. Kuznetsov; V. Yunkin; A. Snigirev, SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Volume 2299 (2020), p. 060004 | DOI:10.1063/5.0031372
  • A. Narikovich; D. Zverev; A. Barannikov; I. Lyatun; I. Panormov; A. Sinitsyn; I. Snigireva; A. Snigirev, SYNCHROTRON AND FREE ELECTRON LASER RADIATION: Generation and Application (SFR-2020), Volume 2299 (2020), p. 060006 | DOI:10.1063/5.0031371
  • Gema Martínez-Criado Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2020), p. 1719 | DOI:10.1007/978-3-030-23201-6_46
  • Alexander Barannikov; Maxim Polikarpov; Petr Ershov; Vladimir Bessonov; Ksenia Abrashitova; Irina Snigireva; Vyacheslav Yunkin; Gleb Bourenkov; Thomas Schneider; Andrey A. Fedyanin; Anatoly Snigirev Optical performance and radiation stability of polymer X-ray refractive nano-lenses, Journal of Synchrotron Radiation, Volume 26 (2019) no. 3, p. 714 | DOI:10.1107/s1600577519001656
  • Anton Narikovich; Maxim Polikarpov; Alexander Barannikov; Nataliya Klimova; Anatoly Lushnikov; Ivan Lyatun; Gleb Bourenkov; Dmitrii Zverev; Igor Panormov; Alexander Sinitsyn; Irina Snigireva; Anatoly Snigirev CRL-based ultra-compact transfocator for X-ray focusing and microscopy, Journal of Synchrotron Radiation, Volume 26 (2019) no. 4, p. 1208 | DOI:10.1107/s1600577519005708
  • S. Lyatun; D. Zverev; P. Ershov; I. Lyatun; O. Konovalov; I. Snigireva; A. Snigirev X-ray reflecto-interferometer based on compound refractive lenses, Journal of Synchrotron Radiation, Volume 26 (2019) no. 5, p. 1572 | DOI:10.1107/s1600577519007896
  • P.F. Wang; Q.L. Dong; W.P. Li; J.B. Liu High beam-current density of a 10-keV nano-focus X-ray source, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 940 (2019), p. 475 | DOI:10.1016/j.nima.2019.06.049
  • V. R. Kocharyan; A. E. Movsisyan; A. S. Gogolev On the Possibility of Two-Dimensional Focusing of Reflected X-Rays from Quartz Single Crystal in the Presence of External Temperature Gradient, Journal of Contemporary Physics (Armenian Academy of Sciences), Volume 53 (2018) no. 3, p. 263 | DOI:10.3103/s106833721803012x
  • A. Narikovich; A. Barannikov; P. Ershov; N. Klimova; A. Lushnikov; I. Lyatun; I. Panormov; M. Polikarpov; A. Sinitsyn; D. Zverev; I. Snigireva; A. Snigirev Mini-Transfocator for X-ray Focusing and Microscopy, Microscopy and Microanalysis, Volume 24 (2018) no. S2, p. 294 | DOI:10.1017/s143192761801379x
  • Lorenzo Mino; Elisa Borfecchia; Jaime Segura-Ruiz; Cinzia Giannini; Gema Martinez-Criado; Carlo Lamberti Materials characterization by synchrotron x-ray microprobes and nanoprobes, Reviews of Modern Physics, Volume 90 (2018) no. 2 | DOI:10.1103/revmodphys.90.025007
  • Clément Y. J. Hémonnot; Sarah Köster Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction, ACS Nano, Volume 11 (2017) no. 9, p. 8542 | DOI:10.1021/acsnano.7b03447
  • Xiao-Juan Zhou; Ju-Zhou Tao; Han Guo; He Lin Atomic pair distribution function method development at the Shanghai Synchrotron Radiation Facility, Chinese Physics B, Volume 26 (2017) no. 7, p. 076101 | DOI:10.1088/1674-1056/26/7/076101
  • A. S. Narikovich; P. A. Ershov; V. N. Leitsin; V. V. Savin; A. A. Snigirev X-ray tomography as a diagnostic method of X-ray refractive optics, Instruments and Experimental Techniques, Volume 60 (2017) no. 3, p. 390 | DOI:10.1134/s0020441217030125
  • Stephen R. Sutton; Antonio Lanzirotti; Matthew Newville; Mark L. Rivers; Peter Eng; Liliana Lefticariu Spatially Resolved Elemental Analysis, Spectroscopy and Diffraction at the GSECARS Sector at the Advanced Photon Source, Journal of Environmental Quality, Volume 46 (2017) no. 6, p. 1158 | DOI:10.2134/jeq2016.10.0401
  • D. Zverev; A. Barannikov; I. Snigireva; A. Snigirev X-ray refractive parabolic axicon lens, Optics Express, Volume 25 (2017) no. 23, p. 28469 | DOI:10.1364/oe.25.028469
  • Freddy C. Adams Synchrotron X-Ray Fluorescence ☆, Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (2017) | DOI:10.1016/b978-0-12-409547-2.14224-6
  • Cristian Mocuta; Daniel Bonamy; Stefan Stanescu; Souliman El Moussaoui; Antoine Barbier; François Montaigne; Francesco Maccherozzi; Ernst Bauer; Rachid Belkhou Finite size effect on the structural and magnetic properties of MnAs/GaAs(001) patterned microstructures thin films, Scientific Reports, Volume 7 (2017) no. 1 | DOI:10.1038/s41598-017-17251-y
  • Xinguo Hong; Lars Ehm; Zhong Zhong; Sanjit Ghose; Thomas S. Duffy; Donald J. Weidner, Volume 1764 (2016), p. 020003 | DOI:10.1063/1.4961131
  • F. Wilhelm; G. Garbarino; J. Jacobs; H. Vitoux; R. Steinmann; F. Guillou; A. Snigirev; I. Snigireva; P. Voisin; D. Braithwaite; D. Aoki; J.-P. Brison; I. Kantor; I. Lyatun; A. Rogalev High pressure XANES and XMCD in the tender X-ray energy range, High Pressure Research, Volume 36 (2016) no. 3, p. 445 | DOI:10.1080/08957959.2016.1206092
  • Mikhail Lyubomirskiy; Irina Snigireva; Victor Kohn; Sergey Kuznetsov; Vyacheslav Yunkin; Gavin Vaughan; Anatoly Snigirev 30-Lens interferometer for high-energy X-rays, Journal of Synchrotron Radiation, Volume 23 (2016) no. 5, p. 1104 | DOI:10.1107/s160057751601153x
  • Xinguo Hong; Lars Ehm; Zhong Zhong; Sanjit Ghose; Thomas S. Duffy; Donald J. Weidner High-energy X-ray focusing and applications to pair distribution function investigation of Pt and Au nanoparticles at high pressures, Scientific Reports, Volume 6 (2016) no. 1 | DOI:10.1038/srep21434
  • Gema Martı́nez-Criado Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2016), p. 1505 | DOI:10.1007/978-3-319-14394-1_46
  • Chen Zhi; Xu Liang; Chen Rong-Chang; Du Guo-Hao; Deng Biao; Xie Hong-Lan; Xiao Ti-Qiao Focusing performance of hard X-ray single Kinoform lens, Acta Physica Sinica, Volume 64 (2015) no. 16, p. 164104 | DOI:10.7498/aps.64.164104
  • Freddy Adams; Carlo Barbante X-Ray Imaging, Chemical Imaging Analysis, Volume 69 (2015), p. 213 | DOI:10.1016/b978-0-444-63439-9.00006-2
  • Frederik Stöhr; Jonathan Wright; Hugh Simons; Jonas Michael-Lindhard; Jörg Hübner; Flemming Jensen; Ole Hansen; Henning Friis Poulsen Optimizing shape uniformity and increasing structure heights of deep reactive ion etched silicon x-ray lenses, Journal of Micromechanics and Microengineering, Volume 25 (2015) no. 12, p. 125013 | DOI:10.1088/0960-1317/25/12/125013
  • Gema Martı́nez-Criado Application of Micro- and Nanobeams for Materials Science, Synchrotron Light Sources and Free-Electron Lasers (2015), p. 1 | DOI:10.1007/978-3-319-04507-8_46-1
  • Jong Hyun Kim; Suk Sang Chang; Geunbae Lim A simple approach for an ultra-precise patterning using deep x-ray lithography with a micron-patterned x-ray mask, International Journal of Precision Engineering and Manufacturing, Volume 15 (2014) no. 11, p. 2385 | DOI:10.1007/s12541-014-0604-6
  • J. Hilhorst; F. Marschall; T. N. Tran Thi; A. Last; T. U. Schülli Full-field X-ray diffraction microscopy using polymeric compound refractive lenses, Journal of Applied Crystallography, Volume 47 (2014) no. 6, p. 1882 | DOI:10.1107/s1600576714021256
  • Theyencheri Narayanan Small‐Angle Scattering, Structure from Diffraction Methods (2014), p. 259 | DOI:10.1002/9781118695708.ch5
  • S.R. Sutton; M. Newville Synchrotron x-Ray Spectroscopic Analysis, Treatise on Geochemistry (2014), p. 213 | DOI:10.1016/b978-0-08-095975-7.01415-7
  • Tobias Schülli; Vincent Favre-Nicolin; Marie-Ingrid Richard; Gilles Renaud Nanostructures Observed by Surface Sensitive X-Ray Scattering and Highly Focused Beams, Characterization of Semiconductor Heterostructures and Nanostructures (2013), p. 113 | DOI:10.1016/b978-0-444-59551-5.00004-2
  • Gema Martinez-Criado; Elisa Borfecchia; Lorenzo Mino; Carlo Lamberti Micro- and Nano-X-ray Beams, Characterization of Semiconductor Heterostructures and Nanostructures (2013), p. 361 | DOI:10.1016/b978-0-444-59551-5.00009-1
  • K Kaznatcheev; O Chubar; J W Keister; M Idir Optical design of the NSLS-II metrology beamline, Journal of Physics: Conference Series, Volume 425 (2013) no. 16, p. 162009 | DOI:10.1088/1742-6596/425/16/162009
  • References, Nanobeam X‐Ray Scattering (2013), p. 245 | DOI:10.1002/9783527655069.refs
  • K. Kaznatcheev; M. Idir; O. Chubar Novel approaches in the SR beamline design, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 710 (2013), p. 161 | DOI:10.1016/j.nima.2012.11.090
  • Alan V. Chadwick; Aaron Berko; Eleanor J. Schofield; A. Mark Jones; J. Fred W. Mosselmans; Andrew D. Smith Application of Microfocus X-Ray Beams from Synchrotrons in Heritage Conservation, International Journal of Architectural Heritage, Volume 6 (2012) no. 2, p. 228 | DOI:10.1080/15583058.2010.528825
  • Günter Buzanich; Martin Radtke; Uwe Reinholz; Heinrich Riesemeier; Christina Streli Micro-X-ray absorption spectroscopy with compound refractive lenses, Journal of Analytical Atomic Spectrometry, Volume 27 (2012) no. 10, p. 1803 | DOI:10.1039/c2ja30130j
  • Günter Buzanich; Martin Radtke; Uwe Reinholz; Heinrich Riesemeier; Andreas F. Thünemann; Christina Streli Impurities in multicrystalline silicon wafers for solar cells detected by synchrotron micro-beam X-ray fluorescence analysis, Journal of Analytical Atomic Spectrometry, Volume 27 (2012) no. 11, p. 1875 | DOI:10.1039/c2ja30188a
  • A. Guilherme; G. Buzanich; M.L. Carvalho Focusing systems for the generation of X-ray micro beam: An overview, Spectrochimica Acta Part B: Atomic Spectroscopy, Volume 77 (2012), p. 1 | DOI:10.1016/j.sab.2012.07.021
  • C. Vettier Resonant elastic X-ray scattering: Where from? where to?, The European Physical Journal Special Topics, Volume 208 (2012) no. 1, p. 3 | DOI:10.1140/epjst/e2012-01602-7
  • Richard Ortega Direct speciation analysis of inorganic elements in single cells using X-ray absorption spectroscopy, J. Anal. At. Spectrom., Volume 26 (2011) no. 1, p. 23 | DOI:10.1039/c0ja00153h
  • Gavin B. M. Vaughan; Jonathan P. Wright; Aleksei Bytchkov; Michel Rossat; Henri Gleyzolle; Irina Snigireva; Anatoly Snigirev X-ray transfocators: focusing devices based on compound refractive lenses, Journal of Synchrotron Radiation, Volume 18 (2011) no. 2, p. 125 | DOI:10.1107/s0909049510044365
  • Hidekazu Takano; Takuya Tsuji; Takuto Hashimoto; Takahisa Koyama; Yoshiyuki Tsusaka; Yasushi Kagoshima Sub-15 nm Hard X-Ray Focusing with a New Total-Reflection Zone Plate, Applied Physics Express, Volume 3 (2010) no. 7, p. 076702 | DOI:10.1143/apex.3.076702
  • Giuliano Zanchetta; Roberto Cerbino Exploring soft matter with x-rays: from the discovery of the DNA structure to the challenges of free electron lasers, Journal of Physics: Condensed Matter, Volume 22 (2010) no. 32, p. 323102 | DOI:10.1088/0953-8984/22/32/323102
  • Andrzej Andrejczuk; Jacek Krzywiński; Yoshiharu Sakurai; Masayoshi Itou The role of single element errors in planar parabolic compound refractive lenses, Journal of Synchrotron Radiation, Volume 17 (2010) no. 5, p. 616 | DOI:10.1107/s0909049510022454
  • V Favre-Nicolin; F Mastropietro; J Eymery; D Camacho; Y M Niquet; B M Borg; M E Messing; L-E Wernersson; R E Algra; E P A M Bakkers; T H Metzger; R Harder; I K Robinson Analysis of strain and stacking faults in single nanowires using Bragg coherent diffraction imaging, New Journal of Physics, Volume 12 (2010) no. 3, p. 035013 | DOI:10.1088/1367-2630/12/3/035013
  • Gabrielle Thériault Diffractive focusing of hard x rays generated by femtosecond laser-driven plasma, Optical Engineering, Volume 49 (2010) no. 4, p. 046501 | DOI:10.1117/1.3381181
  • Antonio Lanzirotti; Ryan Tappero; Darrell G. Schulze Practical Application of Synchrotron-Based Hard X-Ray Microprobes in Soil Sciences, Synchrotron-Based Techniques in Soils and Sediments, Volume 34 (2010), p. 27 | DOI:10.1016/s0166-2481(10)34002-5
  • J. Stangl; C. Mocuta; A. Diaz; T. H. Metzger; G. Bauer X‐Ray Diffraction as a Local Probe Tool, ChemPhysChem, Volume 10 (2009) no. 17, p. 2923 | DOI:10.1002/cphc.200900563
  • Reagan McRae; Pritha Bagchi; S. Sumalekshmy; Christoph J. Fahrni In Situ Imaging of Metals in Cells and Tissues, Chemical Reviews, Volume 109 (2009) no. 10, p. 4780 | DOI:10.1021/cr900223a
  • Theyencheri Narayanan High brilliance small-angle X-ray scattering applied to soft matter, Current Opinion in Colloid Interface Science, Volume 14 (2009) no. 6, p. 409 | DOI:10.1016/j.cocis.2009.05.005
  • A Kazimirov; V G Kohn; Z-H Cai New imaging technique based on diffraction of a focused x-ray beam, Journal of Physics D: Applied Physics, Volume 42 (2009) no. 1, p. 012005 | DOI:10.1088/0022-3727/42/1/012005
  • James E. Penner‐Hahn Metals in Cells: X ‐Ray Fluorescence Microscopy, Encyclopedia of Inorganic and Bioinorganic Chemistry (2004), p. 1 | DOI:10.1002/9781119951438.eibc2110

Cité par 65 documents. Sources : Crossref

Commentaires - Politique