[Conception et estimation de performance d'un système de transmission optique hétérogène]
Cet article aborde les problématiques de la conception et l'estimation de performance d'un système de transmission optique hétérogène, prenant en compte la multiplicité des phénomènes physiques interagissant, et tout particulièrement l'impact combiné des effets non-linéaires de type Kerr et de la dispersion chromatique. Nous passons en revue les grandes classes d'outils de design utilisés pour prédire la performance d'un système, ou pour optimiser la gestion de la dispersion chromatique. Enfin, nous introduisons les concepts de phase non-linéaire pondérée qui capturent l'impact de l'accumulation des effets non-linéaires sur le signal se propageant, et en déduisons des expressions analytiques prédisant la portée d'un système, ou permettant d'optimiser les puissances dans le contexte d'un réseau optique hétérogène composé de sections de fibres de caractéristiques très variables de l'une à l'autre.
This article introduces the issues of design and estimation of performance of a heterogeneous optical transmission system, taking into account the multiplicity of physical effects impairing propagation simultaneously, and, most particularly, the impact of Kerr-induced non-linear effects. We review the usual engineering tools enabling us to predict system performance, as well as design tools to optimize dispersion-management. Finally, we introduce the concept of weighted non-linear phase shifts, to capture the impact of the accumulated non-linearities on a propagating signal, and derive analytical expressions for system reach and power optimization in the context of highly heterogeneous optical link with mixed fiber features.
Mots-clés : Fibre optique, Optique non-linéaire, Dispersion chromatique, System design, Gestion de dispersion, Réseaux de télécommunications
Jean-Christophe Antona 1 ; Sébastien Bigo 1
@article{CRPHYS_2008__9_9-10_963_0, author = {Jean-Christophe Antona and S\'ebastien Bigo}, title = {Physical design and performance estimation of heterogeneous optical transmission systems}, journal = {Comptes Rendus. Physique}, pages = {963--984}, publisher = {Elsevier}, volume = {9}, number = {9-10}, year = {2008}, doi = {10.1016/j.crhy.2008.11.002}, language = {en}, }
TY - JOUR AU - Jean-Christophe Antona AU - Sébastien Bigo TI - Physical design and performance estimation of heterogeneous optical transmission systems JO - Comptes Rendus. Physique PY - 2008 SP - 963 EP - 984 VL - 9 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2008.11.002 LA - en ID - CRPHYS_2008__9_9-10_963_0 ER -
Jean-Christophe Antona; Sébastien Bigo. Physical design and performance estimation of heterogeneous optical transmission systems. Comptes Rendus. Physique, Recent advances in optical telecommunications / Avancées récentes en télécommunications optiques, Volume 9 (2008) no. 9-10, pp. 963-984. doi : 10.1016/j.crhy.2008.11.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.11.002/
[1] G. Charlet, et al., Transmission of 16.4 Tb/s capacity over 2550 km using PDM-QPSK modulation format and coherent receiver, in: Proc. Optical Fiber Communications Conference (OFC'08), paper PDP3, February 24–28, 2008, San Diego, California, USA
[2] T. Haaris, R. Kline, OVUM market analysis: Market Share: 4Q07 and 2007 Global ON, 28 April 08
[3] Dell'Oro market analysis: Optical transport report, 4Q07, vol. 9, no. 4, O1A, Market Summary & Vendor Information, Technology Segments: WDM, SONET/SDH, Optical Switch
[4] Non-Linear Fiber Optics, Academic Press, 2001
[5] et al. Non-linearity mitigation when mixing 40 Gb/s PDM-QPSK channels with preexisting 10 Gb/s NRZ channels, IEEE Photon. Techno. Lett., Volume 20 ( 1 August 2008 ) no. 15, pp. 1314-1316
[6] J.-C. Antona et al., Non-linear cumulated phase as a criterion to assess performance of terrestrial WDM systems, in: Proc. Optical Fiber Communications Conference (OFC'02), paper WX5, March 18–22, 2002, Anaheim, California, USA
[7] J.-C. Antona et al., Performance evaluation of WDM transparent networks incorporating various fibre types, in: Proceedings of ECOC'06, We.3., Sept. 2006, Cannes (France), p. 141
[8] J.-C. Antona et al., Design and performance prediction in meshed networks with mixed fiber types, in: Proc. Optical Fiber Communications Conference (OFC'08), paper JThA48, February 24–28, 2008, San Diego, California, USA
[9] et al. Erbium-Doped Fiber Amplifiers, Device and System Developments, Wiley & Sons, New York, 2002 (Chapter 7)
[10] Coherent detection associated with digital signal processing for fiber optics communications, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 1012-1030
[11] Recent progress in forward error correction and its interplay with transmission impairments, IEEE Journal of Selected Topics in Quantum Electronics, Volume 12 ( July/August 2006 ) no. 4, pp. 544-554
[12] Optical Fiber Telecommunications IV-B: Systems and Impairments, Academic Press, April 15, 2002
[13] Receiver design for digital fiber optic communications systems, Bell System Technical Journal, Volume 52 (1973) no. 6, pp. 843-886
[14] et al.
[15] Suppression of fibre non-linearities by appropriate dispersion management, IEEE Photon. Technol. Lett., Volume 5 (1993) no. 10, pp. 1250-1253
[16] et al. Design of multi-terabit/s terrestrial transmission systems facilitated by simple analytical tools, Annales des Télécommunications, Volume 58 ( Novembre–Décembre 2003 ) no. 11–12, pp. 1757-1784
[17] A doubly periodic dispersion map for ultralong-haul 10- and 40-Gb/s hybrid DWDM optical mesh networks, IEEE Photon. Technol. Lett., Volume 17 ( May 2005 ) no. 5
[18] et al. Optimised dispersion management scheme for long-haul optical communication systems, IEE Electron. Lett., Volume 35 (1999) no. 21, pp. 1865-1866
[19] et al. New transmission systems enabling transparent network perspectives, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 985-1001
[20] Optical fiber transport systems and networks: fundamentals and prospects, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 914-934
[21] et al. Fast analytical assessment of the signal quality in transparent optical networks, IEEE Journal of Lightwave Technology, Volume 24 ( Feb. 2006 ) no. 2, pp. 815-882
[22] et al. Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference, IEE Electronics Letters, Volume 30 (1994) no. 1, pp. 71-72
[23] Y. Frignac, J.-C. Antona, S. Bigo, Enhanced analytical engineering rule for fast optimization of dispersion maps in 40 Gbit/s-based transmission systems, in: Proceedings Optical Fiber Communications (OFC'04), Los Angeles (Ca), paper TuN3, 2004
[24] IEEE Photon. Technol. Lett., 12 (2000), pp. 1624-1626
[25] et al. Unified analysis of weakly-nonlinear dispersion-managed optical transmission systems using the perturbative approach, C. R. Physique, Volume 9 (2008) no. 9–10, pp. 947-962
[26] IEEE Photon. Technol. Lett., 17 (2005), pp. 247-249
[27] IEEE Photon. Technol. Lett., 17 (2005), pp. 2089-2091
[28] Y. Frignac, J.-C. Antona, S. Bigo, J.-P. Hamaide, Numerical optimization of pre- and inline-dispersion compensation in dispersion-managed systems at 40 Gb/s, Proceedings Optical Fiber Communications OFC'02, Paper ThFF5, Anaheim (Ca), 2002
[29] Y. Frignac, S. Bigo, Technique for evaluating system performance using Q in numerical simulations exhibiting intersymbol interference, in: Proceedings Optical Fiber Communication Conference, OFC 2000, vol. 1, 7–10 March 2000, pp. 48–50
[30] et al. Dependence of self-phase modulation impairments on residual dispersion in 10 Gbit/s based terrestrial transmissions using standard fibre, IEEE Photon. Technol. Lett., Volume 11 (1999) no. 7, pp. 824-826
[31] S. Bigo et al., Investigation of self-phase modulation limitation on 10-Gbit/s transmission over different types of fiber, in: Proc. Optical Fiber Communications (OFC'98), San Jose, Feb. 1998, pp. 389–390
[32] V.E. Perlin, H.G. Winful, On trade-off between noise and non-linearity in WDM systems with distributed Raman amplification, in: Proc. Optical Fiber Communications (OFC'02), WB1, pp. 178–179, March 18–22, 2002, Anaheim, California, USA
[33] et al. On the optimization of hybrid Raman/Erbium doped fiber amplifiers, IEEE PTL, Volume 13 ( Nov. 2001 ) no. 11
[34] P. Sillard et al., Optimized chromatic dispersion of DCMs in WDM transmission systems at 40 Gbps, in: Proc. Optical Fiber Communication Conference OFC'08, paper JWA13, San-Diego (Ca), 2008
[35] J.-C. Antona, P. Sillard, Relationship between the achievable distance of WDM transmission systems and criterion of quality for DCM, in: Proc. Optical Fiber Communication Conference OFC'06, paper OWJ2, Anaheim (Ca), March 2006
[36] Experimental verification of fast analytical models for XPM-impaired mixed-fiber transparent optical networks, IEEE Photon. Technol. Lett., Volume 16 ( May 2004 ) no. 5
[37] S. Pachnike et al., Experimental investigation of XPM-induced birefringence in mixed-fiber transparent optical networks, in: Proceedings of OFC'06, paper JThB9; March 2006, Anaheim (Ca)
[38] Mixed fiber infrastructures in long haul WDM-transmission, OSA Journal of Optical Communications, Volume 1 (2004), pp. 10-13
[39] D.Z. Chen et al., World's first 40 Gbps overlay on a field-deployed, 10 Gbps, mixed-fiber, 1200 km, ultra long-haul system, in: Proceedings of OFC'05, paper OTuH4, March 2005, Anaheim (Ca)
[40] M.H. Eiselt et al., Field trial of a 1250-km private optical network based on a single-fiber, shared-amplifier WDM system, in: Proceedings of OFC'06, paper NThF3, March 2006, Anaheim (Ca)
- Design of Parabolic Off-Axis Reflector Optical System for Large Aperture Single Star Simulators, Applied Sciences, Volume 14 (2024) no. 5, p. 1926 | DOI:10.3390/app14051926
- Design principles for modern fibre-optic communication lines, Quantum Electronics, Volume 49 (2019) no. 12, p. 1149 | DOI:10.1070/qel17164
- Submarine fibers, Undersea Fiber Communication Systems (2016), p. 403 | DOI:10.1016/b978-0-12-804269-4.00011-8
- Symbol-Rate Dependence of Dominant Nonlinearity and Reach in Coherent WDM Links, Journal of Lightwave Technology (2015), p. 1 | DOI:10.1109/jlt.2015.2426680
- 500 km unrepeatered 200 Gbit·s−1transmission over a G.652-compliant ultra-low loss fiber only, Laser Physics Letters, Volume 12 (2015) no. 6, p. 066201 | DOI:10.1088/1612-2011/12/6/066201
- New method to obtain optimum performance for 100Gb/s multi-span fiber optic lines, Optics Communications, Volume 355 (2015), p. 279 | DOI:10.1016/j.optcom.2015.06.048
- System design tool for high bit rate terrestrial transmission systems with coherent detection, Bell Labs Technical Journal, Volume 18 (2013) no. 3, p. 251 | DOI:10.1002/bltj.21637
- Cascadability of Optical Packet-Switching Nodes Based on (R)SOA Devices, IEEE Photonics Technology Letters, Volume 25 (2013) no. 24, p. 2389 | DOI:10.1109/lpt.2013.2285485
- Dynamic Operation of Fiber Optical Transmission Networks, Fiber-Optic Transmission Networks (2012), p. 105 | DOI:10.1007/978-3-642-21055-6_5
- Efficient Design of Fiber Optical Transmission Systems, Fiber-Optic Transmission Networks (2012), p. 55 | DOI:10.1007/978-3-642-21055-6_4
- Scaling 112 Gb/s Optical Networks With the Nonlinear Threshold Metric, Journal of Lightwave Technology, Volume 30 (2012) no. 9, p. 1291 | DOI:10.1109/jlt.2012.2185037
- On the nonlinear threshold versus distance in long-haul highly-dispersive coherent systems, Optics Express, Volume 20 (2012) no. 26, p. B204 | DOI:10.1364/oe.20.00b204
- Modeling nonlinearity in coherent transmissions with dominant intrachannel-four-wave-mixing, Optics Express, Volume 20 (2012) no. 7, p. 7777 | DOI:10.1364/oe.20.007777
- Pulse broadening factor as a criterion to assess nonlinear penalty of 40-Gbit/s RZ-DQPSK signals in dynamic transparent optical networks, Optical Fiber Technology, Volume 17 (2011) no. 4, p. 305 | DOI:10.1016/j.yofte.2011.06.002
- Challenges of 40/100Gbps and higher-rate deployments over long-haul transport networks, Optical Fiber Technology, Volume 17 (2011) no. 5, p. 335 | DOI:10.1016/j.yofte.2011.07.011
- , 36th European Conference and Exhibition on Optical Communication (2010), p. 1 | DOI:10.1109/ecoc.2010.5621447
- , 36th European Conference and Exhibition on Optical Communication (2010), p. 1 | DOI:10.1109/ecoc.2010.5621560
- , IEEE Photonics Society Summer Topicals 2010 (2010), p. 38 | DOI:10.1109/phosst.2010.5553716
- , Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching (2010), p. PTuD5 | DOI:10.1364/ps.2010.ptud5
- , National Fiber Optic Engineers Conference (2010), p. JThA1 | DOI:10.1364/nfoec.2010.jtha1
- Nonlinear signal–noise interactions in dispersion-managed links with various modulation formats, Optical Fiber Technology, Volume 16 (2010) no. 2, p. 73 | DOI:10.1016/j.yofte.2009.11.001
- , Asia Communications and Photonics Conference and Exhibition (2009), p. FC1 | DOI:10.1364/acp.2009.fc1
- New transmission systems enabling transparent network perspectives, Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, p. 985 | DOI:10.1016/j.crhy.2008.10.018
Cité par 23 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier