[Détection cohérente associée au traitement du signal numérique pour la communication par fibre optique]
Les systèmes de transmission optiques ont vu leur performances (capacité de transmission du système et portée) très fortement augmenter au cours des quinze dernières années par l'introduction de nouvelles technologies telles que les amplificateurs optique large bande, le multiplexage en longueur d'onde (WDM), la gestion de dispersion chromatique, les équipements fonctionnant au débit de 10 Gbit/s et maintenant de 40 Gbit/s ainsi que de formats de modulation utilisant la modulation de phase (DPSK)… . Afin de continuer à augmenter la capacité du système tout en diminuant les contraintes associées à la propagation de canaux à très haut débit (100 Gbit/s), l'association de formats de modulation multi-niveaux avec des techniques de détection cohérente associées à du traitement du signal numérique apparaît comme très efficace. Les méthodes de modulation et de détection utilisées actuellement seront décrites ainsi que le fonctionnement d'un récepteur cohérent. L'efficacité de la détection cohérente pour compenser les distorsions linéaires introduites par la propagation sera aussi détaillé. Nous verrons également que l'association de la réception cohérente avec des formats multi-niveaux est particulièrement prometteuse au débit de 100 Gbit/s. Finalement, les limitations des systèmes de transmission optique utilisant ces techniques de détection cohérente seront expliquées.
Optical transmission systems have seen their performance (system capacity and system reach) drastically improved in the last 15 years by using new technologies such as wide band optical amplification, wavelength division multiplexing (WDM), dispersion management, introduction of 10 Gbit/s channel rate and now 40 Gbit/s, Differential Phase Shift Keying (DPSK) modulation… . In order to further increase system capacity while relaxing the constraints associated with higher channel rate (i.e. 100 Gbit/s), the association of multilevel modulation format with coherent detection and digital signal processing appears as a key enabler. This article describes the actual modulation and detection methods in order to explain how a coherent receiver including digital signal processing works. The efficiency of coherent receiver to compensate for linear distortions induced by fiber optic propagation will also be detailed. The promising association of coherent receiver with multilevel modulation format, especially for 100 Gbit/s channel rate will be described. Eventually, the limitations of optical communication systems relying on coherent detection will be explained.
Mot clés : Modulation de phase, Communication optique, Multiplexage en polarisation, Modulation optique, Détection cohérente, Traitement du signal numérique
Gabriel Charlet 1
@article{CRPHYS_2008__9_9-10_1012_0, author = {Gabriel Charlet}, title = {Coherent detection associated with digital signal processing for fiber optics communication}, journal = {Comptes Rendus. Physique}, pages = {1012--1030}, publisher = {Elsevier}, volume = {9}, number = {9-10}, year = {2008}, doi = {10.1016/j.crhy.2008.10.019}, language = {en}, }
Gabriel Charlet. Coherent detection associated with digital signal processing for fiber optics communication. Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 1012-1030. doi : 10.1016/j.crhy.2008.10.019. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.019/
[1] High capacity coherent lightwave systems, Journal of Lightwave Technology, Volume 6 (1988) no. 11, pp. 1750-1769
[2] Erbium-Doped Fiber Amplifiers: Device and System Developments, J. Wiley & Sons, New York, 2002
[3] Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments, Photonics Technology Letters, Volume 16 (2004) no. 2, pp. 674-676
[4] S. Tsukamoto, D.S. Ly-Gagnon, K. Katoh, K. Kikuchi, Coherent demodulation of 40 Gb/s polarization-multiplexed QPSK signals with 16 GHz spacing after 200-km transmission, in: OFC'05, Anaheim, CA, March 6–11, PDP29
[5] Non Linear Fiber Optics, Academic Press, 2001
[6] Polarization effects in lightwave systems, Optical Fiber Communications IIIA, Academic Press, 1997, pp. 115-161
[7] P.M. Krummich, et al., Field trial results on statistics of fast polarization changes in long haul WDM transmission systems, in: OFC'05, Anaheim, CA, March 6–11, OThT6
[8] A.H. Gnauck, et al., 2.5 Tb/s () Transmission over NZDSF using RZ-DPSK format and all-Raman amplified spans, in: OFC'02, Anaheim, CA, March 17–22, FC2-1
[9] H. Bissessur, et al., 3,2 Tb/s () C-band transmission over with 0,8 bit/s/Hz efficiency, in: ECOC'01, Amsterdam, Netherlands, October 1–4, PD.M.1.11
[10] A. Färbert, S. Langenbach, N. Stojanovic, C. Dorschky, T. Kupfer, C. Schulien, J.-P. Elbers, H. Wernz, H. Grisser, C. Glingener, Performance of a 10.7 Gb/s receiver with digital equalizer using maximum likelihood sequence estimation, in: ECOC'04, Stockholm, Sweden, September 5–9, Th4.1.5
[11] J. Poirrier, et al., Field demonstration of 10 Gbit/s transmission over a 37 ps PMD cable using electronic mitigation, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, JWA55
[12] Optical phase shift keyed transmission, Journal of Lightwave Technology, Volume 23 (2005) no. 1, pp. 115-130
[13] Digital Signal Processing: Principles, Algorithms and Applications, Prentice-Hall, 1995
[14] S.J. Savory, Digital signal processing options in long haul transmission, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, OtuO3
[15] S.J. Savory, et al., Digital equalization of 40 Gbit/s per wavelength transmission over 2,480 km of standard fiber without optical dispersion compensation, in: Proceeding ECOC'06, Cannes, France, September 24–28, Th 2.5.5
[16] et al. Real-time implementation of 4.4 Gbit/s QPSK intradyne receiver using field programmable fate array, Electronics Letters, Volume 42 ( 23rd November 2006 ) no. 24
[17] O.B. Pardo, et al., Impact of nonlinear impairments on the tolerance to PMD of 100 Gb/s PDM-QPSK data processed in a coherent receiver, in: Proceeding ECOC'08, We 3 E 1
[18] R.A. Griffin, R.I. Johnstone, R.G. Walker, J. Hall, S.D. Wadsworth, K. Berry, A.C. Carter, M.J. Wale, J. Hughes, P.A. Jerram, N.J. Parsons, 10 Gb/s optical differential quadrature phase shift keying (DQPSK) transmission using GaAs/AlGaAs integration, in: OFC'02, Anaheim, CA, March 17–22, FD6
[19] C.R.S. Fludger, et al., , 50 GHz spaced, POLMUX-RZ-DQPSK transmission over 2375 km employing coherent equalization, in: Proceeding OFC'07, Anaheim, CA, USA, March 25–29, PDP22
[20] G. Charlet, et al., Transmission of 16.4 Tbit/s capacity over 2,550 km using PDM QPSK modulation format and coherent receiver, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, PDP3
[21] et al. Observation of PMD-induced coherent crosstalk in polarization-multiplexed transmission, Photonics Technology Letters, Volume 13 (2001) no. 7, pp. 738-740
[22] D. van den Borne, et al., Cross phase modulation induced depolarization penalties in polarization-multiplexed transmission, in: ECOC'04, Stockholm, Sweden, Mo 4.5.5
[23] et al. Real-time measurements of a 40 Gb/s coherent system, Optics Express, Volume 16 (2008) no. 2, pp. 873-879
[24] O.B. Pardo, et al., Investigation of design options for overlaying 40 Gb/s coherent PDM-QPSK channels over a 10 Gb/s system infrastructure, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, OTuM5
[25] D. McGhan, C. Laperle, A. Savchenko, C. Li, G. Mark, M. O'Sullivan, 5120 km RZ-DPSK transmission over G652 fiber at 10 Gb/s with no optical dispersion compensation, in: OFC'05, Anaheim, CA, March 6–11, PDP27
[26] R.-J. Essiambre, P.J. Winzer, Fibre nonlinearities in electronically pre-distorted transmission, in: ECOC'05, Glasgow, Scotland, September 25–29, Tu 3.2.2
[27] J. Renaudier, et al., Experimental analysis of 100 Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks, in: Proceeding ECOC'08, Th 2.A.3
[28] T. Ellermeyer, et al., DA and AD converters for 25 GS/s and above, in: Proceeding LEOS Summer Topical Meeting 2008, Acapulco, Mexico, July 21–23
[29] M. Nakazawa, et al., Polarization-multiplexed 1 Gsymbol, 64QAM (12 Gbit/s) coherent optical transmission over 150 km with an optical bandwidth of 2 GHz, in: Proceeding OFC'07, Anaheim, CA, USA, March 25–29, PDP26
[30] M. Seimetz, Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, OTuM2
[31] et al. Transmission experiment of multi-gigabit coherent optical OFDM systems over 1000 km SSMF fibre, Electronics Letters, Volume 43 (2007) no. 3, pp. 183-184
[32] S.L. Jansen, et al., 20 Gb/s OFDM transmission over 4,160 km SSMF enabled by RF-pilot tone phase noise compensation, in: Proceeding OFC'07, Anaheim, CA, USA, March 25–29, PDP15
[33] S.L. Jansen, et al., PDM OFDM transmission with 2 bit/s/Hz spectral efficiency over 1,000 km of SSMF, in: Proceeding OFC'08, San Diego, CA, USA, February 24–28, PDP2
[34] K. Forozesh, et al., The influence of the dispersion map in coherent optical OFDM transmission systems, in: Proceeding LEOS Topical Meeting 2008, Acapulco, Mexico, July 21–23, WC2.4
Cité par Sources :
Commentaires - Politique