The emergence of new devices and technologies introduces new trends and design issues for optical transport networks. The higher performance of transmission and switch systems enables the reduction of optoelectronic conversions in intermediate nodes with the introduction of transparency in the network. Simultaneously, the system of Automatic Switched Optical Networks (ASON) describes the rules for the construction of a network enabling cost reduction, above all for maintenance, and fast and automatic reconfiguration. Two axes have to evolve to make possible all these proprieties: the control plane and its relative set of protocols, to manage the network working for the network automation, and also the systems and tools enabling transparency and reconfigurability. In this article we focus on the second axis applied to an automatic transparent network.
L'apparition de nouveaux dispositifs et de nouvelles technologies permet d'envisager de façon nouvelle la conception des réseaux de transport optiques. L'amélioration des performances des systèmes de transmission et de commutation a permis de s'affranchir de conversions optoélectronique dans les nœuds intermédiaires et a ainsi rendu possible l'introduction de la transparence dans les réseaux. En parallèle, le concept de Réseaux Optiques à Commutation Automatique (Automatic Switched Optical Networks (ASON)) définit les règles de fonctionnement d'un réseau favorisant la réduction des coûts, principalement les coûts de maintenance, une plus grande disponibilité, ainsi qu'une reconfiguration plus rapide et automatique du réseau. Pour mettre en œuvre ces propriétés, deux axes de recherche sont envisagés : le plan de contrôle et ses différents protocoles dédiés à la gestion du réseau pour le rendre automatique comme les systèmes et les outils apportant transparence et reconfigurabilité. Dans cet article, nous analysons ce second axe appliqué à un réseau transparent automatique.
Mot clés : Réseau optique transparent, Dispositifs accordables, Estimateurs de la qualité de transmission, Outils de planification et de routage
A. Morea 1; F. Leplingard 1; T. Zami 1; N. Brogard 1; C. Simonneau 1; B. Lavigne 1; L. Lorcy 1; D. Bayart 1
@article{CRPHYS_2008__9_9-10_985_0, author = {A. Morea and F. Leplingard and T. Zami and N. Brogard and C. Simonneau and B. Lavigne and L. Lorcy and D. Bayart}, title = {New transmission systems enabling transparent network perspectives}, journal = {Comptes Rendus. Physique}, pages = {985--1001}, publisher = {Elsevier}, volume = {9}, number = {9-10}, year = {2008}, doi = {10.1016/j.crhy.2008.10.018}, language = {en}, }
TY - JOUR AU - A. Morea AU - F. Leplingard AU - T. Zami AU - N. Brogard AU - C. Simonneau AU - B. Lavigne AU - L. Lorcy AU - D. Bayart TI - New transmission systems enabling transparent network perspectives JO - Comptes Rendus. Physique PY - 2008 SP - 985 EP - 1001 VL - 9 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2008.10.018 LA - en ID - CRPHYS_2008__9_9-10_985_0 ER -
%0 Journal Article %A A. Morea %A F. Leplingard %A T. Zami %A N. Brogard %A C. Simonneau %A B. Lavigne %A L. Lorcy %A D. Bayart %T New transmission systems enabling transparent network perspectives %J Comptes Rendus. Physique %D 2008 %P 985-1001 %V 9 %N 9-10 %I Elsevier %R 10.1016/j.crhy.2008.10.018 %G en %F CRPHYS_2008__9_9-10_985_0
A. Morea; F. Leplingard; T. Zami; N. Brogard; C. Simonneau; B. Lavigne; L. Lorcy; D. Bayart. New transmission systems enabling transparent network perspectives. Comptes Rendus. Physique, Volume 9 (2008) no. 9-10, pp. 985-1001. doi : 10.1016/j.crhy.2008.10.018. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2008.10.018/
[1] Dynamic routing in translucent WDM optical networks: The intradomain case, Journal of Lightwave Technology, Volume 23 ( March 2005 ) no. 3, pp. 955-971
[2] G. 8080, Architecture for the automatically switched optical network (ASON), 2006 Revision – to be published imminently
[3] GMPLS user-network interface in support of end-to-end rerouting, IEEE Communication Magazine, Volume 43 ( July 2005 ) no. 7, pp. 35-43
[4] et al. Optical performance monitoring, Journal of Lightwave Technology, Volume 22 ( January 2004 ) no. 1, pp. 294-304
[5] J.C. Antona et al., Performance & physical design of heterogeneous optical transmission systems, Comptes Rendus Physique 2008, submitted for publication
[6] et al. QoT function and routing: an optimized combination for connection search in translucent networks, OSA Journal of Optical Networking, Volume 7 ( January 2008 ) no. 1
[7] et al. Network control and management challenges in opaque networks utilizing transparent optical switches, IEEE Communication Magazine ( February 2004 )
[8] ITU-T Reccomendation G.652, 2005
[9] ITU-T Reccomendation, G.655, 2006
[10] et al. Path Routing in Mesh Optical Networks, Wiley Editorial Offices, 2007
[11] A. Morea, I. Boyer-Hear, Availability of translucent networks based on wss nodes, comparison with opaque networks, in: Proceedings IEEE Networks 2006
[12] A. Morea, J. Poirrier, A critical analysis of the possible cost savings of translucent networks, in: Proceedings IEEE DRCN05, 2005
[13] T. Ducellier, et al., Novel high performance hybrid waveguide – MEMs wavelength selective switch in a 32-cascade loop experiment, in: Proceedings IEEE ECOC04, 2004
[14] K. Tse, AT&T's photonic network, in: Proceedings IEEE/OSA OFC08, 2008
[15] H. Bulow, et al., Outage dynamics of 40 Gb/s optical paths routed over PMD-impaired fiber links, in: Proceedings OSA/IEEE OFC08, 2008
[16] I. Tomkos, et al., Dynamic impairment constraint optical networking: the activities of DICONET EU project, in: OFC 2008 Workshop on Network Planning Tools
[17] T. Zami, et al., Driving technologies addressing the future dynamic transparent core networks, in: Proceedings of IEEE ICTON08, 2008
[18] G. Suwala, G. Swallow, SONET/SDH – like resilience for IP networks: a survey of traffic protection mechanisms, in: IEEE Network, March/Avril 2004
[19] G. Li, et al., Experiment in fast restoration using GMPLS in optical/electronic mesh networks, in: Proceedings of OFC01, 2001
[20] R.D. Doverspike, et al., Fast restoration in a mesh network of optical cross-connect, in: Proceedings of OFC99, 1999
[21] C. Chen, S. Banerjee, A new model for optimal routing and wavelength assignment in wavelength division multiplexed optical networks, in: Proceedings IEEE Infocom96, 1996
[22] I. Tomkos, et al., Impairment constraint based routing in mesh optical networks, in: Proceedings IEEE/OSA OFC07, 2007
[23] T. Cinkler, et al., λ-path fragmentation and de-fragmentation through dynamic grooming, in: Proceedings IEEE ICTON 2005
[24] Load balance RWA algorithm using statistical analysis in WDM mesh networks, International Journal of Contemporary Mathematical Sciences, Volume 1 (2006) no. 10, pp. 501-507
[25] A.K. Kodi, A. Louri, A new dynamic bandwidth re-allocation technique in optically interconnected high-performance computing systems, in: Proceedings IEEE Symposium on High-Performance Interconnects 2006
[26] et al. Optical network design and restoration, Bell Labs Technical Journal ( January–March 1999 )
[27] et al. Challenges and requirements for introducting impairment-awareness into the management and control plane ASON/GMPLS WDM networks, IEEE Communication Magazine, Volume 44 ( December 2006 ), pp. 76-86
[28] J. Zhou, X. Yuan, A study of dynamic routing and wavelength assignment with imprecise network state information, in: Proceedings IEEE ICPPW02, 2002
[29] A. Giorgetti, et al., Impact of link state advertisement in GMPLS-based wavelength-routed networks, in: Proceedings IEEE/OSA OFC08, 2008
[30] B. Lavigne, et al., Method for the determination of a Quality-of-Transmission estimator along the lightpaths of partially transparent networks, in: Proceedings IEEE ECOC07, 2007
[31] F. Leplingard, et al., Determination of the impact of a quality of transmission estimator margin on the dimensioning of an optical network, in: Proceedings IEEE/OSA OFC08, 2008
[32] S. Pachnicke, Physical impairment based regenerator placement and routing in translucent optical networks, in: OSA IEEE OFC08, February 2008, paper OWA2
[33] et al. Performance evaluation of a transparent reconfigurable metropolitan network under static and dynamic traffic, IEEE/OSA Journal of Lightwave Technology (2002)
[34] Derivation of analytical expressions for the bit-error probability in lightwave systems with optical amplifiers, Journal of Lightwave Technology, Volume 8 ( December 1990 ) no. 12, pp. 1816-1823
[35] J.C. Antona, et al., Nonlinear cumulated phase as a criterion to assess performance of terrestrial WDM systems, in: Proceedings IEEE/OSA OFC02, 2002
[36] Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks, IEEE Journal of Lightwave Technologies, Volume 21 (2003), pp. 1876-1886
[37] T. Zami, et al., Crosstalk-induced degradation in an optical-noise-limited detection system, in: Proc. of IEEE/OSA OFC1999, February 1999, pp. 255–257
[38] et al. High-capacity, ultra-long-haul networks (I. Kaminov; T. Li, eds.), Optical Fiber Telecommunication IVB, Systems and Impairments, Academic Press, Elsevier Science Imprint, 2002, pp. 198-231
[39] et al. Polarization-mode dispersion (I. Kaminov; T. Li, eds.), Optical Fiber Telecommunication IVB, Systems and Impairments, Academic Press, Elsevier Science Imprint, 2002, pp. 725-861
[40] ITU-T, Recommandation G.691, Optical interfaces for single channel STM-64, STM-256 and other SDH systems with optical interfaces, ITU 2000
Cited by Sources:
Comments - Policy