[Influence des effets capacitifs sur les performances dynamiques d'un CNTFET par la méthode Monte Carlo]
Le nanotube de carbone (CNT) est à ce jour l'un des candidats les plus prometteurs pour faire passer le transistor à effet de champ (FET) à l'échelle du nanomètre. Des recherches intensives sont en cours afin de déterminer les caractéristiques statiques et dynamiques des transistors à nanotube de carbone (CNTFET). Nous présentons dans cette étude des résultats de simulations de CTNFET par la méthode Monte-Carlo avec prise en compte des interactions électrons-phonons. Un des objectifs est de présenter les propriétés du transport pouvant être atteintes dans ce matériau par une évaluation du libre parcours moyen des porteurs. Une étude des caractéristiques statiques du CNTFET est réalisée et permet de mettre en avant l'influence du contrôle capacitif par la grille sur les performances. Enfin nous comparons les performances d'un CNTFET avec celles obtenues par simulation d'un transistor à nanofil de Silicium.
Carbon nanotubes (CNT) appear as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of a carbon nanotube field effect transistor (CNTFET). In this work, we present results of a Monte Carlo simulation of a coaxially gated CNTFET, including electron–phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of the electron mean-free-path. To highlight the potential of the high performance level of CNTFET, we then perform a study of the DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of a Si nanowire MOSFET.
Mot clés : Simulation Monte Carlo, CNTFET, Délai intrinsèque, Fréquence de transition, Interaction electron–phonon, Capacité quantique
Hugues Cazin d'Honincthun 1, 2 ; Sylvie Galdin-Retailleau 1 ; Arnaud Bournel 1 ; Philippe Dollfus 1 ; Jean-Philippe Bourgoin 2
@article{CRPHYS_2008__9_1_67_0, author = {Hugues Cazin d'Honincthun and Sylvie Galdin-Retailleau and Arnaud Bournel and Philippe Dollfus and Jean-Philippe Bourgoin}, title = {Monte {Carlo} study of coaxially gated {CNTFETs:} capacitive effects and dynamic performance}, journal = {Comptes Rendus. Physique}, pages = {67--77}, publisher = {Elsevier}, volume = {9}, number = {1}, year = {2008}, doi = {10.1016/j.crhy.2007.11.009}, language = {en}, }
TY - JOUR AU - Hugues Cazin d'Honincthun AU - Sylvie Galdin-Retailleau AU - Arnaud Bournel AU - Philippe Dollfus AU - Jean-Philippe Bourgoin TI - Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance JO - Comptes Rendus. Physique PY - 2008 SP - 67 EP - 77 VL - 9 IS - 1 PB - Elsevier DO - 10.1016/j.crhy.2007.11.009 LA - en ID - CRPHYS_2008__9_1_67_0 ER -
%0 Journal Article %A Hugues Cazin d'Honincthun %A Sylvie Galdin-Retailleau %A Arnaud Bournel %A Philippe Dollfus %A Jean-Philippe Bourgoin %T Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance %J Comptes Rendus. Physique %D 2008 %P 67-77 %V 9 %N 1 %I Elsevier %R 10.1016/j.crhy.2007.11.009 %G en %F CRPHYS_2008__9_1_67_0
Hugues Cazin d'Honincthun; Sylvie Galdin-Retailleau; Arnaud Bournel; Philippe Dollfus; Jean-Philippe Bourgoin. Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance. Comptes Rendus. Physique, Volume 9 (2008) no. 1, pp. 67-77. doi : 10.1016/j.crhy.2007.11.009. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2007.11.009/
[1] et al. High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett., Volume 92 (2004), p. 106804
[2] J. Chen et al., Self-aligned carbon nanotube transistors with novel chemical doping, in: Proc. IEEE IEDM Tech. Dig. 695 (2004)
[3] et al. Extraordinary mobility in semi-conducting carbon nanotubes, Nano Lett., Volume 4–35 (2004)
[4] et al. High performance of potassium n-doped carbon nanotube field-effect transistor, Appl. Phys. Lett., Volume 84 (2004), p. 3693
[5] et al. High-performance dual-gate carbon nanotube FETs with 40-nm gate length, IEEE Electron Dev. Lett., Volume 26 (2005), p. 823
[6] et al. High performance n-type carbon nanotube field-effect transistors with chemically doped contacts, Nano Lett., Volume 5 (2005), p. 345
[7] et al. Intrinsic current gain cutoff frequency of 30 GHz with carbon nanotube transistors, Appl. Phys. Lett., Volume 90 (2007), p. 233108
[8] et al. High-performance carbon nanotube transistors on SrTiO/Si substrates, Appl. Phys. Lett., Volume 84 (2004), p. 1946
[9] et al. Band-to-band tunneling in carbon nanotube field-effect transistors, Phys. Rev. Lett., Volume 93 (2004), p. 196805
[10] et al. Ballistic carbon nanotube field-effect transistors, Nature, Volume 424 (2003), p. 654
[11] Role of phonon scattering in carbon nanotube field-effect transistors, Appl. Phys. Lett., Volume 86 (2005), p. 193103
[12] et al. Effect of discrete impurities on electron transport in ultra-short MOSFET using 3D Monte Carlo simulation, IEEE Trans. Electron Dev., Volume 51 (2004), p. 749
[13] et al. Electron–phonon scattering and ballistic behavior in semiconducting carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 172112
[14] et al. Physical Properties of Carbon Nanotubes, Imperial College Press, London, 1988
[15] Electron–phonon interaction in single-wall carbon nanotubes: a time-domain study, Phys. Rev. Lett., Volume 84 (2000), p. 5002
[16] Semi-classical transport and phonon scattering of electrons in semiconducting carbon nanotubes, Phys. Rev. B, Volume 68 (2003), p. 045426
[17] Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes, Phys. Rev. B, Volume 67 (2003), p. 035401
[18] et al. Effects of radial breathing mode phonons on charge transport in semiconducting zigzag carbon nanotubes, Appl. Phys. Lett., Volume 87 (2005), p. 123101
[19] et al. Strength of radial breathing mode in single-walled carbon nanotubes, Phys. Rev. B, Volume 71 (2005), p. 035416
[20] et al. Electron–phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett., Volume 94 (2005), p. 086802
[21] On the ballistic transport in nanometer-scaled DG MOSFETs, IEEE Trans. Electron Dev., Volume 51 (2004), p. 1148
[22] Degeneracy in the ensemble Monte Carlo method for high-field transport in semiconductors, IEEE Trans. Electron Dev., Volume 32 (1985), p. 2431
[23] et al. High-performance carbon nanotube field-effect transistor with tunable polarities, IEEE Trans. Nanotechnol., Volume 4 (2005), p. 481
[24] et al. Controlling doping and carrier injection in carbon nanotube transistors, Appl. Phys. Lett., Volume 80 (2002), p. 2773
[25] et al. Self-aligned carbon nanotube transistors with charge transfer doping, Appl. Phys. Lett., Volume 86 (2005), p. 123108
[26] Electronic Transport in Mesoscopic Systems, Cambridge University Press, 1995
[27] Quantum capacitance devices, Appl. Phys. Lett., Volume 52 (1988), p. 501
[28] et al. Quantum capacitance in nano-scale device modelling, J. Appl. Phys., Volume 96 (2004), p. 5180
[29] et al. Transport in nanotubes: Effect of remote impurity scattering, Phys. Rev. B, Volume 70 (2004), p. 035408
[30] et al. Effect of phonon scattering on intrinsic delay and cutoff frequency of carbon nanotube FETs, IEEE Trans. Electron Dev., Volume 53 (2006) no. 10, pp. 2467-2469
[31] A three-dimensional simulation study of the performance of carbon nanotube field-effect transistors with doped reservoirs and realistic geometry, IEEE Trans. Electron Dev., Volume 53 (2006) no. 8, pp. 1782-1788
[32] AC performance of nanoelectronics: towards a ballistic THz nanotube transistor, Solid State Electron, Volume 48 (2004) no. 11, pp. 1981-1986
[33] High-frequency performance projections for ballistic carbon-nanotube transistors, IEEE Trans. Nanotechnol., Volume 50 (2006) no. 1, pp. 14-22
Cité par Sources :
Commentaires - Politique