Comptes Rendus
Momentum-resolved spectroscopy of correlated metals: A view from dynamical mean field theory
[Fonctions spectrales résolues en moment des matériaux métalliques corrélés : Des résultats de la théorie de champ moyen dynamique]
Comptes Rendus. Physique, Volume 10 (2009) no. 6, pp. 537-547.

Dans ce rapport nous discutons comment les fonctions spectrales résolues en moment, déterminées dans le cadre des théories à plusieurs corps, peuvent nous aider à comprendre la physique sous-jacente aux spectres de photo émission résolue en angle (ARPES). Une attention particulière est portée aux phénomènes induits par les corrélations électroniques coulombiennes. Parmi ces effets on trouve les transferts de poids spectral, la perte de cohérence de quasi-particules, et la sensibilité de ces phénomènes aux paramètres externes tels que la température ou la pression. Prenant pour exemple les phases métalliques de VO2 et V2O3 nous examinons des résultats obtenus dans le cadre de la théorie de champ moyen dynamique, et les limites des approches de structure de bandes. Notre discussion souligne le besoin de techniques véritablement à plusieurs corps, même pour la description de certains matériaux métalliques.

In this review we discuss how theoretical momentum-resolved many-body spectral functions can help understanding the physics underlying angular resolved photoemission spectra (ARPES). Special focus is set on phenomena induced by electronic Coulomb correlations. Among these effects are transfers of spectral weight, the loss of quasi-particle coherence, and the sensitivity of these phenomena on external parameters, such as temperature or pressure. For the examples of the metallic phases of VO2 and V2O3 we review results obtained within dynamical mean-field theory, and assess the limits of band-structure approaches. Our discussion emphasizes the need for true many-body techniques even for certain metallic materials.

Publié le :
DOI : 10.1016/j.crhy.2009.07.002
Keywords: Momentum-resolved spectroscopy, ARPES
Mot clés : Fonctions spectrales résolues en moment, ARPES

Jan M. Tomczak 1, 2 ; Alexander I. Poteryaev 3 ; Silke Biermann 2, 3

1 Research Institute for Computational Sciences, AIST, Tsukuba, 305-8568 Japan
2 Japan Science and Technology Agency, CREST, Kawaguchi, 332-0012 Japan
3 Centre de physique théorique, École polytechnique, CNRS, 91128 Palaiseau cedex, France
@article{CRPHYS_2009__10_6_537_0,
     author = {Jan M. Tomczak and Alexander I. Poteryaev and Silke Biermann},
     title = {Momentum-resolved spectroscopy of correlated metals: {A} view from dynamical mean field theory},
     journal = {Comptes Rendus. Physique},
     pages = {537--547},
     publisher = {Elsevier},
     volume = {10},
     number = {6},
     year = {2009},
     doi = {10.1016/j.crhy.2009.07.002},
     language = {en},
}
TY  - JOUR
AU  - Jan M. Tomczak
AU  - Alexander I. Poteryaev
AU  - Silke Biermann
TI  - Momentum-resolved spectroscopy of correlated metals: A view from dynamical mean field theory
JO  - Comptes Rendus. Physique
PY  - 2009
SP  - 537
EP  - 547
VL  - 10
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crhy.2009.07.002
LA  - en
ID  - CRPHYS_2009__10_6_537_0
ER  - 
%0 Journal Article
%A Jan M. Tomczak
%A Alexander I. Poteryaev
%A Silke Biermann
%T Momentum-resolved spectroscopy of correlated metals: A view from dynamical mean field theory
%J Comptes Rendus. Physique
%D 2009
%P 537-547
%V 10
%N 6
%I Elsevier
%R 10.1016/j.crhy.2009.07.002
%G en
%F CRPHYS_2009__10_6_537_0
Jan M. Tomczak; Alexander I. Poteryaev; Silke Biermann. Momentum-resolved spectroscopy of correlated metals: A view from dynamical mean field theory. Comptes Rendus. Physique, Volume 10 (2009) no. 6, pp. 537-547. doi : 10.1016/j.crhy.2009.07.002. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2009.07.002/

[1] S. Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer Series in Solid-State Sciences, 2003

[2] A. Damascelli; Z.-X. Shen; Z. Hussain Angle-resolved photoemission spectroscopy of the cuprate superconductors, Rev. Mod. Phys., Volume 75 (2003), p. 473

[3] F. Reinert; S. Hüfner Photoemission spectroscopy – From early days to recent applications, New J. Phys., Volume 7 (2005), p. 97

[4] L. Perfetti; P.A. Loukakos; M. Lisowski; U. Bovensiepen; H. Berger; S. Biermann; P.S. Cornaglia; A. Georges; M. Wolf Time evolution of the electronic structure of 1T-TaS2 through the insulator-metal transition, Phys. Rev. Lett., Volume 97 (2006) no. 6, p. 067402

[5] M. Civelli; M. Capone; S.S. Kancharla; O. Parcollet; G. Kotliar Dynamical breakup of the Fermi surface in a doped Mott insulator, Phys. Rev. Lett., Volume 95 (2005) no. 10, p. 106402

[6] Th. Pruschke; J. Obermeier; J. Keller; M. Jarrell Spectral properties and bandstructure of correlated electron systems, Physica B: Condensed Matter, Proceedings of the International Conference on Strongly Correlated Electron Systems, Volume 611 (1996), pp. 223-224

[7] C. Berthod; T. Giamarchi; S. Biermann; A. Georges Breakup of the Fermi surface near the Mott transition in low-dimensional systems, Phys. Rev. Lett., Volume 97 (2006) no. 13, p. 136401

[8] S. Sakai; Y. Motome; M. Imada Evolution of electronic structure of doped Mott insulators: Reconstruction of poles and zeros of Green's function, Phys. Rev. Lett., Volume 102 (2009) no. 5, p. 056404

[9] A. Georges; G. Kotliar; W. Krauth; M.J. Rozenberg Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys., Volume 68 (1996) no. 1, p. 13

[10] G. Kotliar; D. Vollhardt Strongly correlated materials: Insights from dynamical mean-field theory, Phys. Today, Volume 57 (2004) no. 3, p. 53

[11] A.I. Lichtenstein; M.I. Katsnelson Ab initio calculations of quasiparticle band structure in correlated systems: LDA++ approach, Phys. Rev. B, Volume 57 (1998) no. 12, pp. 6884-6895

[12] V.I. Anisimov; A.I. Poteryaev; M.A. Korotin; A.O. Anokhin; G. Kotliar First-principles calculations of the electronic structure and spectra of strongly correlated systems: Dynamical mean-field theory, J. Phys.: Condens. Matter, Volume 9 (1997) no. 35, pp. 7359-7367

[13] S. Biermann; A. Dallmeyer; C. Carbone; W. Eberhardt; C. Pampuch; O. Rader; M.I. Katsnelson; A.I. Lichtenstein Observation of Hubbard bands in gamma-manganese, JETP Lett., Volume 80 (2004) no. 9, p. 612 (condmat0112430)

[14] K. Byczuk; M. Kollar; K. Held; Y.F. Yang; I.A. Nekrasov; Th. Pruschke; D. Vollhardt Kinks in the dispersion of strongly correlated electrons, Nat. Phys., Volume 3 (2007), p. 168

[15] I.A. Nekrasov; K. Held; G. Keller; D.E. Kondakov; Th. Pruschke; M. Kollar; O.K. Andersen; V.I. Anisimov; D. Vollhardt Momentum-resolved spectral functions of SrVO3 calculated by LDA + DMFT, Phys. Rev. B, Volume 73 (2006) no. 15, p. 155112

[16] J.H. Shim; K. Haule; G. Kotliar Modeling the localized-to-itinerant electronic transition in the heavy fermion system CeIrIn5, Science, Volume 318 (2007) no. 5856, pp. 1615-1617

[17] K. Haule; J.H. Shim; G. Kotliar Correlated electronic structure of LAO1 − xFxFeAs, Phys. Rev. Lett., Volume 100 (2008) no. 22, p. 226402

[18] P. Hohenberg; W. Kohn Inhomogeneous electron gas, Phys. Rev., Volume 136 (1964) no. 3B, p. B864-B871 | DOI

[19] W. Kohn; L.J. Sham Self-consistent equations including exchange and correlation effects, Phys. Rev., Volume 140 (1965) no. 4A, p. A1133-A1138 | DOI

[20] F. Aryasetiawan; O. Gunnarsson The GW method, Rep. Prog. Phys., Volume 61 (1998) no. 3, pp. 237-312

[21] G. Onida; L. Reining; A. Rubio Electronic excitations: Density-functional versus many-body Green's-function approaches, Rev. Mod. Phys., Volume 74 (2002) no. 2, pp. 601-659

[22] A. Continenza; S. Massidda; M. Posternak Self-energy corrections in VO2 within a model GW scheme, Phys. Rev. B, Volume 60 (1999) no. 23, p. 15699

[23] J.M. Tomczak, Spectral and optical properties of correlated materials, Ph.D. thesis, École polytechnique, France, 2007

[24] M. Gatti; F. Bruneval; V. Olevano; L. Reining Understanding correlations in vanadium dioxide from first principles, Phys. Rev. Lett., Volume 99 (2007) no. 26, p. 266402

[25] R. Sakuma; T. Miyake; F. Aryasetiawan First-principles study of correlation effects in VO2, Phys. Rev. B, Volume 78 (2008) no. 7, p. 075106

[26] S. Kobayashi; Y. Nohara; S. Yamamoto; T. Fujiwara GW approximation with LSDA + U method and applications to NiO, MnO, and V2O3, Phys. Rev. B, Volume 78 (2008) no. 15, p. 155112

[27] P.W. Anderson Localized magnetic states in metals, Phys. Rev., Volume 124 (1961) no. 1, pp. 41-53

[28] F. Lechermann; A. Georges; A. Poteryaev; S. Biermann; M. Posternak; A. Yamasaki; O.K. Andersen Dynamical mean-field theory using Wannier functions: A flexible route to electronic structure calculations of strongly correlated materials, Phys. Rev. B, Volume 74 (2006) no. 12, p. 125120

[29] S.Y. Savrasov; G. Kotliar; E. Abrahams Correlated electrons in δ-plutonium within a dynamical mean-field picture, Nature, Volume 410 (2001) no. 6830, p. 793

[30] J. Minár; L. Chioncel; A. Perlov; H. Ebert; M.I. Katsnelson; A.I. Lichtenstein Multiple-scattering formalism for correlated systems: A KKR-DMFT approach, Phys. Rev. B, Volume 72 (2005) no. 4, p. 045125

[31] L.V. Pourovskii; B. Amadon; S. Biermann; A. Georges Self-consistency over the charge density in dynamical mean-field theory: A linear muffin-tin implementation and some physical implications, Phys. Rev. B, Volume 76 (2007) no. 23, p. 235101

[32] S.Y. Savrasov; G. Kotliar Spectral density functionals for electronic structure calculations, Phys. Rev. B, Volume 69 (2004) no. 24, p. 245101

[33] A. Bansil; M. Lindroos; S. Sahrakorpi; R.S. Markiewicz Role of site selectivity, dimensionality, and strong correlations in angle-resolved photoemission from cuprate superconductors, New J. Phys., Volume 7 (2005), p. 140

[34] J.M. Tomczak; S. Biermann Effective band structure of correlated materials: The case of VO2, J. Phys.: Condens. Matter, Volume 19 (2007) no. 36, p. 365206

[35] J.M. Tomczak; F. Aryasetiawan; S. Biermann Effective bandstructure in the insulating phase versus strong dynamical correlations in metallic VO2, Phys. Rev. B, Volume 78 (2008) no. 11, p. 115103

[36] F.J. Morin Oxides which show a metal-to-insulator transition at the Neel temperature, Phys. Rev. Lett., Volume 3 (1959) no. 1, pp. 34-36

[37] V. Eyert The metal-insulator transitions of VO2: A band theoretical approach, Ann. Phys. (Leipzig), Volume 11 (2002), p. 650

[38] A. Tanaka A new scenario on the metal-insulator transition in VO2, J. Phys. Soc. Jpn., Volume 72 (2003) no. 10, p. 2433

[39] M.S. Laad; L. Craco; E. Müller-Hartmann Metal-insulator transition in rutile-based VO2, Phys. Rev. B, Volume 73 (2006) no. 19, p. 195120

[40] M.S. Laad; L. Craco; E. Müller-Hartmann VO2: A two-fluid incoherent metal?, Europhys. Lett., Volume 69 (2005) no. 6, pp. 984-989

[41] A. Liebsch; H. Ishida; G. Bihlmayer Coulomb correlations and orbital polarization in the metal-insulator transition of VO2, Phys. Rev. B, Volume 71 (2005) no. 8, p. 085109

[42] S. Biermann; A. Poteryaev; A.I. Lichtenstein; A. Georges Dynamical singlets and correlation-assisted Peierls transition in VO2, Phys. Rev. Lett., Volume 94 (2005) no. 2, p. 026404

[43] S. Shin; S. Suga; M. Taniguchi; M. Fujisawa; H. Kanzaki; A. Fujimori; H. Daimon; Y. Ueda; K. Kosuge; S. Kachi Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3, Phys. Rev. B, Volume 41 (1990) no. 8, pp. 4993-5009

[44] G.A. Sawatzky; D. Post X-ray photoelectron and auger spectroscopy study of some vanadium oxides, Phys. Rev. B, Volume 20 (1979) no. 4, pp. 1546-1555

[45] E. Goering; M. Schramme; O. Müller; R. Barth; H. Paulin; M. Klemm; M.L. denBoer; S. Horn Leed and photoemission study of the stability of VO2 surfaces, Phys. Rev. B, Volume 55 (1997) no. 7, pp. 4225-4230

[46] E.Z. Kurmaev; V.M. Cherkashenko; Yu.M. Yarmoshenko; St. Bartkowski; A.V. Postnikov; M. Neumann; L.C. Duda; J.H. Guo; J. Nordgren; V.A. Perelyaev; W. Reichelt Electronic structure of VO2 studied by X-ray photoelectron and X-ray emission spectroscopies, J. Phys.: Condens. Matter, Volume 10 (1998), p. 4081

[47] K. Okazaki; H. Wadati; A. Fujimori; M. Onoda; Y. Muraoka; Z. Hiroi Photoemission study of the metal-insulator transition in VO2/TiO2(001): Evidence for strong electron–electron and electron–phonon interaction, Phys. Rev. B, Volume 69 (2004) no. 16, p. 165104

[48] R. Eguchi; M. Taguchi; M. Matsunami; K. Horiba; K. Yamamoto; Y. Ishida; A. Chainani; Y. Takata; M. Yabashi; D. Miwa; Y. Nishino; K. Tamasaku; T. Ishikawa; Y. Senba; H. Ohashi; Y. Muraoka; Z. Hiroi; S. Shin Photoemission evidence for a Mott–Hubbard metal-insulator transition in VO2, Phys. Rev. B, Volume 78 (2008) no. 7, p. 075115

[49] T.C. Koethe; Z. Hu; M.W. Haverkort; C. Schussler-Langeheine; F. Venturini; N.B. Brookes; O. Tjernberg; W. Reichelt; H.H. Hsieh; H.-J. Lin; C.T. Chen; L.H. Tjeng Transfer of spectral weight and symmetry across the metal-insulator transition in VO2, Phys. Rev. Lett., Volume 97 (2006) no. 11, p. 116402

[50] A.S. Barker; H.W. Verleur; H.J. Guggenheim Infrared optical properties of vanadium dioxide above and below the transition temperature, Phys. Rev. Lett., Volume 17 (1966) no. 26, pp. 1286-1289

[51] M.M. Qazilbash; M. Brehm; G.O. Andreev; A. Frenzel; P.-C. Ho; B.-G. Chae; B.-J. Kim; S.J. Yun; H.-T. Kim; A.V. Balatsky; O.G. Shpyrko; M.B. Maple; F. Keilmann; D.N. Basov Infrared spectroscopy and nano-imaging of the insulator-to-metal transition in vanadium dioxide, Phys. Rev. B, Volume 79 (2009) no. 7, p. 075107

[52] J.M. Tomczak; S. Biermann Materials design using correlated oxides: Optical properties of vanadium dioxide, Europhys. Lett., Volume 86 (2009) no. 3, p. 37004 | arXiv

[53] J.M. Tomczak, S. Biermann, Optical properties of correlated materials – Generalized Peierls approach and its application to VO2, Phys. Rev. B (2009), in press, preprint: | arXiv

[54] J.M. Tomczak, S. Biermann, Optical properties of correlated materials – Or why intelligent windows may look dirty. Ψk Scientific Highlight of the Month 88 (2008); Phys. Status Solidi B 246 (2009), in press, doi: | DOI

[55] E. Goering; M. Schramme; O. Muller; H. Paulin; M. Klemm; M.L. denBoer; S. Horn Angular-resolved photoemission on V2O3 and VO2, Physica B: Condensed Matter, Proceedings of the International Conference on Strongly Correlated Electron Systems, Volume 996 (1997), pp. 230-232

[56] N.F. Mott Metal-Insulator Transitions, Taylor and Francis, London, 1990

[57] D.B. McWhan; T.M. Rice; J.P. Remeika Mott transition in Cr-doped V2O3, Phys. Rev. Lett., Volume 23 (1969) no. 24, pp. 1384-1387

[58] S.-K. Mo; H.-D. Kim; J.D. Denlinger; J.W. Allen; J.-H. Park; A. Sekiyama; A. Yamasaki; S. Suga; Y. Saitoh; T. Muro; P. Metcalf Photoemission study of (V1 − xMx)2O3 (M = Cr,Ti), Phys. Rev. B, Volume 74 (2006) no. 16, p. 165101

[59] S.-K. Mo; J.D. Denlinger; H.-D. Kim; J.-H. Park; J.W. Allen; A. Sekiyama; A. Yamasaki; K. Kadono; S. Suga; Y. Saitoh; T. Muro; P. Metcalf; G. Keller; K. Held; V. Eyert; V.I. Anisimov; D. Vollhardt Prominent quasiparticle peak in the photoemission spectrum of the metallic phase of V2O3, Phys. Rev. Lett., Volume 90 (2003) no. 18, p. 186403

[60] O. Müller; J.P. Urbach; E. Goering; T. Weber; R. Barth; H. Schuler; M. Klemm; S. Horn; M.L. denBoer Spectroscopy of metallic and insulating V2O3, Phys. Rev. B, Volume 56 (1997) no. 23, pp. 15056-15061

[61] M. Schramme, Ph.D. thesis, Universität Augsburg, 2000

[62] F. Rodolakis; B. Mansart; E. Papalazarou; S. Gorovikov; P. Vilmercati; L. Petaccia; A. Goldoni; J.P. Rueff; S. Lupi; P. Metcalf; M. Marsi Quasiparticles at the Mott transition in V2O3: Wave vector dependence and surface attenuation, Phys. Rev. Lett., Volume 102 (2009) no. 6, p. 066805

[63] M.J. Rozenberg; G. Kotliar; H. Kajueter; G.A. Thomas; D.H. Rapkine; J.M. Honig; P. Metcalf Optical conductivity in Mott–Hubbard systems, Phys. Rev. Lett., Volume 75 (1995) no. 1, pp. 105-108

[64] M.S. Laad; L. Craco; E. Muller-Hartmann Orbital-selective insulator-metal transition in V2O3 under external pressure, Phys. Rev. B, Volume 73 (2006) no. 4, p. 045109

[65] M.S. Laad; L. Craco; E. Müller-Hartmann Orbital switching and the first-order insulator-metal transition in paramagnetic V2O3, Phys. Rev. Lett., Volume 91 (2003) no. 15, p. 156402

[66] K. Held; G. Keller; V. Eyert; D. Vollhardt; V.I. Anisimov Mott–Hubbard metal-insulator transition in paramagnetic V2O3: An LDA + DMFT(QMC) study, Phys. Rev. Lett., Volume 86 (2001) no. 23, pp. 5345-5348

[67] G. Keller; K. Held; V. Eyert; D. Vollhardt; V.I. Anisimov Electronic structure of paramagnetic V2O3: Strongly correlated metallic and Mott insulating phase, Phys. Rev. B, Volume 70 (2004) no. 20, p. 205116

[68] V.I. Anisimov; D.E. Kondakov; A.V. Kozhevnikov; I.A. Nekrasov; Z.V. Pchelkina; J.W. Allen; S.-K. Mo; H.-D. Kim; P. Metcalf; S. Suga; A. Sekiyama; G. Keller; I. Leonov; X. Ren; D. Vollhardt Full orbital calculation scheme for materials with strongly correlated electrons, Phys. Rev. B, Volume 71 (2005) no. 12, p. 125119

[69] A.I. Poteryaev; J.M. Tomczak; S. Biermann; A. Georges; A.I. Lichtenstein; A.N. Rubtsov; T. Saha-Dasgupta; O.K. Andersen Enhanced crystal-field splitting and orbital-selective coherence induced by strong correlations in V2O3, Phys. Rev. B, Volume 76 (2007) no. 8, p. 085127

[70] J.M. Tomczak; S. Biermann Multi-orbital effects in optical properties of vanadium sesquioxide, J. Phys.: Condens. Matter, Volume 21 (2009), p. 064209

[71] W.F. Brinkman; T.M. Rice Application of Gutzwiller's variational method to the metal-insulator transition, Phys. Rev. B, Volume 2 (1970) no. 10, pp. 4302-4304

[72] M.M. Qazilbash; A.A. Schafgans; K.S. Burch; S.J. Yun; B.G. Chae; B.J. Kim; H.T. Kim; D.N. Basov Electrodynamics of the vanadium oxides VO2 and V2O3, Phys. Rev. B, Volume 77 (2008) no. 11, p. 115121

[73] L. Baldassarre; A. Perucchi; D. Nicoletti; A. Toschi; G. Sangiovanni; K. Held; M. Capone; M. Ortolani; L. Malavasi; M. Marsi; P. Metcalf; P. Postorino; S. Lupi Quasiparticle evolution and pseudogap formation in V2O3: An infrared spectroscopy study, Phys. Rev. B, Volume 77 (2008) no. 11, p. 113107

[74] N.D. Mermin Thermal properties of the inhomogeneous electron gas, Phys. Rev., Volume 137 (1965) no. 5A, p. A1441-A1443

[75] L.X. Benedict; C.D. Spataru; S.G. Louie Quasiparticle properties of a simple metal at high electron temperatures, Phys. Rev. B, Volume 66 (2002) no. 8, p. 085116

[76] S.V. Faleev; M. van Schilfgaarde; T. Kotani; F. Léonard; M.P. Desjarlais Finite-temperature quasiparticle self-consistent GW approximation, Phys. Rev. B: Condens. Matter Mater. Phys., Volume 74 (2006) no. 3, p. 033101

Cité par Sources :

Commentaires - Politique